WP-CD **Code Development** for Integrated Modelling

Project Leader Gloria Falchetto CEA/IRFM gloria.falchetto@cea.fr

http://users.jet.efda.org/eurofusion-consortium/

Hajo Klingshirn

G. Falchetto - WP-CD ITM Annual Meeting 22 November 2013

Code Development for integrated modelling

! NEW PROJECT : DELIVERABLE ORIENTED APPROACH

"Achieving the Mission goals requires significant development of existing modelling codes with a particular focus on integrated modelling."

WP-CD SCOPE

- "provide a suite of codes that can be validated on existing machines and used for ITER and DEMO predictions"
- "build on the large body of existing modelling codes developed by the EFDA Associates including the infrastructure, toolset and codes developed under the EFDA ITM Taskforce"
 [...] including addition of new physics to existing models, coupling of codes into integrated workflows and code optimisation
- "Specific ITER simulation work in support of ITER IO and F4E with specific deliverables tbd in close collaboration with them"

WP-CD Deliverables

ROADMAP 2020 HEADLINES

	Extended linear stability chain (equilibrium coupled to MHD stability,		
	edge instabilities, fast particle driven instabilities)		H1.4
•	Core transport simulator including various equilibrium and transport turbulence modules, impurities, pellets, neutrals, sawteeth, NTM, and Current Drive modules (extended to synergies, EC, NBI, IC, LH, with improved physics H1.1; H1.5; H1.6	ort mod Heating fast-ion 5; H1.8, I	ules, ; is) H1.9
•	Coupled feedback controlled free boundary plasma simulator and transport solver	I	H1.8
	Inclusion of synthetic diagnostics for comparison to experiment	- E	-11.8
	Coupled Core and Edge transport H1.2	2; H1.5;	H1.6
	Edge workflows modelling SOL and interaction with PFCs	H1.5;	H1.6
	ELM control workflow – including ELM module/3D MHD non-linea	r code	H1.2
	Disruption workflow – including ELM module/RMP		H1.3
	Optimise predictive models for divertor/SOL		H2.3

WP-CD Physics applications

Integrated code development aiming at following applications:

Validation and exploitation of IM workflows

- Linear MHD stability chain
 ETS (impurities, neutrals, H&CD with synergy, NTM, turbulence) + control
- ✓ feedback controlled FBE+ETS simulator

AUG TCV MAST JET WEST

G. Falchetto - WP-CD ITM Annual Meeting | 22 November 2013

WP-CD short-term objectives

Deploy to EU Laboratories a validated ITM platform, including a suite of simplified physics modules integrated in standard workflows

Train users in EU Laboratories (with CPT)

- Validate modules and workflows on experiments in close collaboration with MST1 and JET1 WPs
- Identify needs and gaps in modeling tools needed from MST, JET, JT60SA, ITER, ITPA and implement improved physics models

Converge with ITER integrated modelling infrastructure

Contact persons in Laboratories for local ITM platform support (in link with WPISA CPT)

Contact persons for maintaining machine description & datamapping

access of EU codes to ITER IMAS: Integrated Modelling Analysis Suite

Integrated Modelling development : build up on ITM infrastructure and workflows

Extension to stellarator and PWI community

interaction / cooperation to be set-up

 WP-S2 : Stellarator Optimization: Theory, Development, Modelling and Engineering (4ppy)

Topics related to Tokamaks or RFP: 3D, magnetic topology, gyrokinetics, momentum transport, NTMs, density limit, system code, ...

- WP-PFC : Preparation of efficient PFC-Operation for ITER and DEMO
 - Atomic and molecular data (plasma and material) validation
 - PWI code benchmark (ERO, DUST, MEMOS, WALLDYN etc ..)

WF development responsible = actively involved developer

1. Equilibrium & stability chain R. Coelho / D. Yadikin

- consolidate & package equil. + MHD workflows to apply to AUG, JET, MST:
 - Equilibrium + pedestal instability
 - HELENA ILSA
 - J- α workflow
 - kink modes, ideal and RWM
- extend with fast particle driven, micro-instabilities, edge instabilities
- cross-verification

2. Free Boundary Equilibrium + control C. Boulbe / J. Urban

- cross-verification of FBE codes
- consolidate FBE + feedback control and make applicable
- FBE coupling to ETS

WF development responsible = actively involved developer

3. ETS core workflows with improved physics capability P. Strand

- include more transport modules (TCI including TGLF, quasilinear)
- neoclassical modules
- turbulence modules
- stiff solver
- sources : NBI, LH, fast ions, neutrals, runaway electrons
- verification / benchmarking with other transport codes

4. Turbulence + synthetic diagnostics workflows A.H. Nielsen

- SOL turbulence + probes
- core/edge turbulence + synthetic reflectometry
- benchmarking of SOL codes with MST1 data H2.3

WP-CD 2014 activities and sub-projects ⇒ coordinated tasks

Tasks responsible = actively involved developer

- 5. Heating & Current Drive T. Johnson
 - IMP5HCD
 - synergies
 - build control capability
 - cross-verification (under coordination of involved code developer)
- 6. Benchmark non-linear codes for fast-ion MHD interaction G. Vlad
- **7.** EDGE/SOL coordination **D.** Coster
 - core-edge coupling
 - test and consolidate
 - edge codes
 - adapt I/O to CPOs / AMNS interfaces
 - edge workflows
 - SOLPS technical optimization
 - AMNS data
 - import new data /maintenance of modules

Modelling, Validation, Application of ITM workflows

! NOT in WP-CD but under MST, JT60SA, JET, DEMO

IPH: WP – MST1 Medium Size Tokamaks

Modeling for preparation and interpretation Modelling coordination related tasks (T14) Contact:s P. Martin, M. Beurskens D. McDonald (CSU RO)

IPH: WP – SA Preparation of the exploitation of JT-60SA scenarios, MHD, turbulence/transport, fast particles, control PL:G. Giruzzi

PPPT: WP- PMI managed by Programme Unit, RO G. Federici application of ITM workflows to DEMO physics studies

JET: WP- JET1 Calls in 2014

WP-CD in support to MST1 modelling : workflows application to AUG

- Equilibrium-stability workflows pedestal stability
- ETS (European Transport Simulator) workflows
 - ✓ providing heating and current drive profiles, as well as derived transport coefficients (direct analysis)
 H1.1, H1.7
 - ✓ with HCD and various transport models for comparison to experiment
 - \checkmark with NTM prediction and, when ready, NTM stabilization
 - ✓ with Free Boundary Equilibrium and transport (start up, transition into H-mode, transition back to L-mode, ramp-down)
 - \checkmark with HCD synergies
 - \checkmark with coupling to turbulence

turbulence workflow + synthetic diagnostics (comparison with turbulence measurements)

H2.3

H1.4, H1.7

WP-CD Responses to call for participation

TOTAL offered 63 ppy ! Funding available 20ppy

Physics / AMNS data / synthetic diagnostics experts / code developers
> 6 workflow development and coordinated tasks

Computational physics expertise

- ETS solvers optimization
- coupling

Infrastructure expertise mainly WP-ISA - CPT

- webpage/portal maintenance
- − Visualization ⇔ link with CPT
- − local ITM platform installation responsibles in RU ⇔ link with CPT

Experimental data interface

- Machine description & data mapping maintenance
- Expert of experimental database to provide experimental data for mapping, test and verification of CD codes/tools missing MAST JET TCV !

Physics modules still missing

- **Modules for**
 - ✓ quasilinear transport
 - ✓ neoclassical transport
 - > FLMs
 - > sawteeth
 - > fast particle driven instabilities, runaways
 - \checkmark turbulence, including impurities
 - ✓ LH
 - ✓ edge/SOL transport
 - ✓ neutral gas transport code
 - > Interaction with PFCs
- **3D MHD non-linear codes**
 - > FIM
 - halo currents
 - disruptions
 - > NTM

✓ Synthetic diagnostics for comparison to experiment

3D equilibrium

WP-ISA Infrastructure Support Activity managed by Programme Unit: RO Denis Kalupin

ISIP + CPT ⇒ extended Core Programming Team

Team of code managers and developers, totalling up to 5 ppy,

to assist the work of the code users in the various Work Packages and the code developers in the Code Development workpackage (WPCD) with the following tasks:

- Functional maintenance of the Integrated Modelling platform and tools
- Implementation of new functionalities to the infrastructure
- Support to the integration of modules into workflows
- Provision of training in the Integrated Modelling infrastructure and workflows

Team selected for 2 years proposals from former ISIP + CPT members

WP-ISA Core Programming Team

Deliverables 2014-2015

- 1. Provide support to users in the other work packages.
 - tbd
- 2. Develop new features, needed as the complexity of workflows increases.
 - Simulation catalogue
 - User friendly GUI
 - Maintenance and upgrades of central Kepler installation
 - Assistance in the rebuild of physics actors
 - Workflow/actor submission to HPC/GRID
 - Technical support to Data Model and Access Layer releases
- 3. Finalize the major restructuring of the UAL low level
- 4. Support to local deployment
 - documentation, training for IM platform local installation, centralized tracker support for issues raised from local installations

Timeline for implementation

Definition of the individual Associate contributions

- Selection is ongoing: PLs select the contribution of each Laboratory in close interaction with the interested RUs.
- December 4 Proposal of allocation of activities to EFDA SC
- December 12 Extraordinary HoRU meeting for the approval of the distribution of activities.
- Definition of the detailed work during the preparation of the Project Management Plan (Dec. 2013 - April 2014) by PLs in close interaction with the Laboratories participating in the project.
- Following the negotiation with the EC some revisions might be necessary. These will be formally adopted by the Consortium GA at its first meeting.
- Consortium agreement to be signed in the first part of next year.