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One Modeling Framework for Integrated Tasks

“A comprehensive framework designed to facilitate experimental
data analysis and enable integrated simulations”
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Main idea: collect data from different sources into a single,
self-descriptive, hierarchical data structure (OMFIT tree)

Similar to the ITM CPO...
Unified structure enables communication among different codes

...but free-form
With no a-priory decision of what is stored and how

(like MDS+ or the filesystem on your laptop)

It’s the difference between a top-down and a bottom-up approach
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How could this possibly work!? Actually...

• Read/write of few scientific data formats enables interaction with
many different codes

• Often codes need to exchange small amount of data

• Exploit existing integration efforts:
− many codes already accept each others files
− conversion utilities are aready available

• No need to modify codes and their I/O
− No burden on developers of individual codes
− Effort done by users interested in integrating

• Skips alltogether arguments about which data structure to use

• Does not exclude use of standard data structures when available
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Other important characteristics of the OMFIT framework

• Component based approach and Python scripting allow building
of complex workflows

• Graphical user interfaces ease execution of each component and
their interaction

• Power users retain full control of code I/O files and execution

• Local/remote and serial/parallel codes execution

• Lightweight, pure-Python framework easy to install, maintain and
expand

• Integrated with experimental databases for data analysis,
generation of codes inputs and validation

• Collaborative environment promoting sharing code and testing

• Addition/improvement of features and components is
problem-driven
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OMFIT provides an increasing list of ever-improving modules

Easy to support new codes, especially if they use standard file formats
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OMFIT was used as part of many integrated modeling
studies presented at 2013 APS

F. Turco MARS-K Modeling Validation for Rotation and Fast-Ions Impact on RWM
Stability in DIII-D Plasmas

B. Grierson Interpretive and Predictive Transport Analysis in DIII-D ITER Baseline and
QH-Mode Discharges

X. Wang Off-diagonal Terms Connection Between Particle and Momentum
Transport in DIII-D Plasma

S. Mordijck Changes in Particle Transport as a Function of Collisionality and Rotation

C. Holland Validation Metrics for Improving Our Understanding of Turbulent
Transport (invited)

C. Luna Prediction of Transport Phenomena with Neural Networks

S. Smith Magnetic Flutter Plasma Transport Induced by 3D Fields in DIII-D (invited)

C. Chrystal Testing Neoclassical and Turbulent Effects on Poloidal Rotation in the
Core of DIII-D (invited)

E. Bellie Neoclassical Flows, Transport, and Non-Axisymmetric Effects in the
Tokamak Plasma Edge (invited)

A. Garofalo Modeling of Steady-state Scenarios for the FNSF, Advanced Tokamak
Approach
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OMFIT manages the complexity of many codes
interacting with each other in complicated workflows

Routinely used for DIII-D equilibrium, stability and transport analyses
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OMFIT streamlines kinetic equilibrium reconstructions which
are at the foundation of most physics studies

Measurements and models (Jb, NBI, ECH) used to constrain P and J
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OMFIT can efficiently investigate ideal MHD stability
of the core plasma

DCON finds unstable βn, growth rate and mode structure with GATO
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OMFIT can conveniently generate edge stability diagrams

Peeling-ballooning stability strongly depends on edge ∇P and ∇J
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OMFIT can conveniently generate edge stability diagrams

Peeling-ballooning stability strongly depends on edge ∇P and ∇J
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Self-consitent steady-state predictive models are efficiently
obtained as an extension of the kinetic EFIT workflow

Substitute: kinetic profiles fitting → kinetic profiles prediction

TGYRO efficiently solves the steady-state transport equation:

Γneo(x) + Γturb(x) = Γtarget(x) =

∫ x

0

V ′(r)S(r) dr

- Neoclassical from NEO and turbulent from either TGLF or GYRO
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The next step: integrating OMFIT with ITM

Strategy:
1 Enable manipulation of CPO data

− R/W of data from/to the UAL using available Python bindings

2 Execution of kepler actors
− “standalone” kepler actors use text files for I/O

Achieved so far:
• Wrote OMFIT Python class for read/write of I/O files of standalone

kepler actors
• Can automatically create OMFIT-ITM interface and execute

standalone actor
• Can use UAL but little more work is needed for seamless

integration in the OMFIT tree
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Live demo

PLEASE WEAR YOUR 3D GLASSES
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Conclusions

• Comprehensive OMFIT framework developed and used to
support DIII-D with many applications

• Integration with ITM-UAL will allow seamless execution of the
codes adhering with the ITM-TF standards

• OMFIT-ITM integration prepares ground for GA integrated
modeling of ITER
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Extra slides
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Survey of ideal MHD stability at increased βn with GATO

Pressure scanned
by scaling of P ′ and
ideal MHD stability
evaluated for
different toroidal
mode numbers n
and wall distances
(conformal wall)

220 GATO simulations run 20 at a time in parallel on 3 different remote machines

N=3.4 N=3.9 N=4.4 N=4.9 N=5.4
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Evaluation of whistler waves (also known as ‘helicons‘)
current drive efficiency and location with GENRAY

• DIII-D target discharge #122976 with
βn = 3.9 (high β needed for absorption)

• Automated scan of launched n‖ and
poloidal angle θ of wave injection

• Target compares favorably (60 kA/MW )
with respect to EC (16 kA/MW ) and NBI
(26 kA/MW )

Normalized power

θ

500MHz n‖ ∼ 3.4 θ ∼ 40 deg
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High level Python APIs allow users to:
execute tasks remotely and in parallel

• Seamless execute codes and and manage files remotely
− Let codes run codes where they already work!
− Machine running OMFIT directs and stores data in OMFIT tree

• Parallel execution of the same task with different input
parameters, on multiple remote machines

• Real-time monitoring of local / remote and serial / parallel tasks
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High level Python APIs allow users to:
create Graphical Users Interfaces (GUIs)

User GUIs speed-up routine analysis
and hide many of the underlying
complexities to inexperienced users

• GUIs are python scripts and are
created by users themselves

• Quick and easy! For each GUI
entry need to specify the OMFIT
tree location associated with it

• GUIs can be nested to create
comprehensive GUIs, while
ensuring consistency
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Quickly visualize data in the OMFIT tree or create
publication quality graphics with Python scripts
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1D/2D arrays are (over)-plotted
with the push of a button

• Inspect inputs/outputs of
different analyses / codes /
iterations / ...

• Plots are interactive and
can be customized
(à la MATLAB)

More sophisticated plots are
scripted in Python

• Matplotlib library very similar
to MATLAB and IDL plot
commands

• Plotting scripts can be
assigned to specific objects
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Access MDS+ data, PTDATA signals and D3DRDB tables
directly from the OMFIT tree

• Browse, search, plot and manipulate experimental data
interactively or in scripts

• Creation of codes inputs: profiles, power, angles,..
• Validation: compare modeling results with experiments

MDS+ traverser 
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