Overview of the OMFIT framework ITM code camp, Lisbon Portugal

O. Meneghini

Oak Ridge Associated Universities General Atomics theory group

Nov 20th 2013

One Modeling Framework for Integrated Tasks

"A comprehensive framework designed to facilitate experimental data analysis and enable integrated simulations"

000	X OMFIT - Build of 16 Oct 2012, 12:52				
Eile Edit Plot Help					
? Browser: OMFIT['KineticE	FIT']['ONETWO']['FILES']['statefile']		Console Clear Follow Pattern		
View 1 View 2 Quick Plot Figures Scratch Main Settings			['GKS' 'SETTINGS')['REMOTE_SETUP' 'idl_server']		
OMEIT	Content	Data type	('GKS')['help'] ('guickPlot']		
😓 KineticEFIT			['seratch']		
🗢 EFIT			('MainSettings']['SETUP']['user']		
🗢 FILES	['kEQDSK', 'rfile', 'gEQDSK', 'aEQDSK', 'mEQDSK', 'snap']	OMFITtree	['MainSettings']['SETUP']['home'] ['MainSettings']['SETUP']['home']		
kEQDSK	FILE: k149231.03191 (26.6KB)	OMFITnamelist	['MainSettings']['SETUP']['workDir']		
D rfile	FILE: rfile.txt (1.2KB)	OMFITnamelist	['MainSettings']['SETUP']['modulesDir'] ['MainSettings']]'SETUP']]		
▶ gEQDSK	FILE: g149231.03191 (308.3KB)	OMFITeqdsk	['MainSettings'] 'REMOTE_SETUP']['workDir']		
▷ aEQDSK	FILE: a149231.03191 (4.7KB)	OMFITeqdsk	['MainSettings']['REMATE_SETUP']['server'] ['MainSettings']]'REMATE_SETUP']['id] server']		
D mEQDSK	FILE: m149231.03191 (33.4KB)	OMFITeqdsk	['MainSettings'] 'REMOTE_SETUP']['tunnel']		
⊅ snap	FILE: efit_snap.dat_EFIT03 (956.0bytes)	OMFITnamelist	['MainSettings']['MDSremoteLink']['server'] ['MainSettings']['MDSremoteLink']['tunnel']		
PLOTS	0	OMFITtree	class: ['KineticEFIT']['ONETHO']['SCRIFTS']['statefileClass']		
D GUIS	('EFITgui')	OMFITtree	class: ['KineticEFIT']['SCRIPTS']['kineticIterationClass'] class: ['GKS']['SCRIPTS']['dkcoutClass']		
D SCRIPTS	('EFITexec', 'EFITresetRfile')	OMFITtree	user class object: ['KineticEFIT']['OMETWO']['FILES']['statefile']		
▷ SETTINGS	FILE: MainSettingsNamelist.txt (381.0bytes)	OMFITnamelist	<pre><class 'onfittree.statefileclass'=""> user class object: ['EineticEFIT']]'FILES']['iteration 1']['statefile']</class></pre>		
help	FILE: EFIThelp.txt (807.0bytes)	OMFITFILeASCI	<class 'omfittree.statefileclass'=""></class>		
🗢 profiles		OMFITmodule	<pre></pre>		
D GAprofiles			user class object: ['GKS']['FILES']['gksout123']['gksout_00020']		
ZIPFITprofiles			Colass Conditioner gesoutclass >		
♦ SCRIPTS	('extractProfiles')	OMFITtree	Command box Execute Clear		
b GUIS	['profilesGUI']	OMFITtree	for k in OMETT['KineticEFIT']['ONETWO']['FILES']['statefile']:		
▶ PLOTS	['plotProfiles', 'plot_GA_ZIP_prof']	OMFITtree	print(k)		
PROFILES	FILE: profiles.txt (8.0KB)	OMFITnamelist	<pre>plot(OMFIT['KineticEFIT']['ONETWO']['FILES']['statefile'][k])</pre>		
▷ SETTINGS	FILE: MainSettingsNamelist.txt (436.0bytes)	OMFITnamelist			
help	FILE: help.txt (22.0bytes)	OMFITTILeASCI			
vy ONETWO		OMFITmodule			
TILES	('inone', 'statefile', 'iterdb')	OMFITtree			
⊅ inone	FILE: inone.AOT (17.2KB)	OMFITnamelist			
D statefile	FILE: statefile_3.191000E+00.nc (523.7KB)	statefileClass			
iterdb	FILE: iterdb (246.5KB)	OMFITTILeASCI			
▷ TEMPLATES	['inone.template', 'inone.nfreya.template', 'inone.nubea	n. OMFITtree			
♦ SCRIPTS	['ONETWOconvertITERDB', 'ONETWOsetupProfiles', 'ONET	VOOMFITtree			
b GUIS	['ONETWOgul']	OMFITtree			
× <					
Variables descriptions 🗍 Show hidden nodes 🖉 Show data types Project saved as;Users(meneghin)Dropbox/pycode(OMFIT)projects(kineticEFIT_GKS.zip					

Main idea: collect data from different sources into a single, self-descriptive, hierarchical data structure (OMFIT tree)

Similar to the ITM CPO...

Unified structure enables communication among different codes

...but free-form

With no a-priory decision of what is stored and how (like MDS+ or the filesystem on your laptop)

It's the difference between a top-down and a bottom-up approach

How could this possibly work!? Actually...

- Read/write of few scientific data formats enables interaction with many different codes
- Often codes need to exchange small amount of data
- Exploit existing integration efforts:
 - many codes already accept each others files
 - conversion utilities are aready available
- No need to modify codes and their I/O
 - No burden on developers of individual codes
 - Effort done by users interested in integrating
- Skips alltogether arguments about which data structure to use
- Does not exclude use of standard data structures when available

Other important characteristics of the OMFIT framework

- Component based approach and Python scripting allow building of complex workflows
- Graphical user interfaces ease execution of each component and their interaction
- Power users retain full control of code I/O files and execution
- Local/remote and serial/parallel codes execution
- Lightweight, pure-Python framework easy to install, maintain and expand
- Integrated with experimental databases for data analysis, generation of codes inputs and validation
- Collaborative environment promoting sharing code and testing
- Addition/improvement of features and components is **problem-driven**

Easy to support new codes, especially if they use standard file formats

Equilibrium	Gyro-kinetic	MHD	Stability
EFIT	GYRO	M3DC1	DCON
VARYPED	TGLF	BOUT++	GATO
CORSICA	GKS	Transport	PEST3
Experimental	Heating	ONETWO	ELITE
analysis	GENRAY	GCNMP	RMP
PROFILES	TORBEAM	NEO	NTV
SCOPE	NUBEAM	TGYRO	FLUTTER
			

UVFII

OMFIT was used as part of many integrated modeling studies presented at 2013 APS

- F. Turco MARS-K Modeling Validation for Rotation and Fast-lons Impact on RWM Stability in DIII-D Plasmas
- B. Grierson Interpretive and Predictive Transport Analysis in DIII-D ITER Baseline and QH-Mode Discharges
 - X. Wang Off-diagonal Terms Connection Between Particle and Momentum Transport in DIII-D Plasma
- S. Mordijck Changes in Particle Transport as a Function of Collisionality and Rotation
- C. Holland Validation Metrics for Improving Our Understanding of Turbulent Transport (invited)
 - C. Luna Prediction of Transport Phenomena with Neural Networks
 - S. Smith Magnetic Flutter Plasma Transport Induced by 3D Fields in DIII-D (invited)
- C. Chrystal Testing Neoclassical and Turbulent Effects on Poloidal Rotation in the Core of DIII-D (invited)
 - E. Bellie Neoclassical Flows, Transport, and Non-Axisymmetric Effects in the Tokamak Plasma Edge (invited)
- A. Garofalo Modeling of Steady-state Scenarios for the FNSF, Advanced Tokamak Approach

OMFIT manages the complexity of many codes interacting with each other in complicated workflows

Routinely used for DIII-D equilibrium, stability and transport analyses

OMFIT streamlines kinetic equilibrium reconstructions which are at the foundation of most physics studies

Measurements and models (J_b , NBI, ECH) used to constrain P and J

OMFIT can efficiently investigate ideal MHD stability of the core plasma

DCON finds unstable β_n , growth rate and mode structure with GATO

Peeling-ballooning stability strongly depends on edge ∇P and ∇J

Peeling-ballooning stability strongly depends on edge ∇P and ∇J

Self-consitent steady-state predictive models are efficiently obtained as an extension of the kinetic EFIT workflow

Substitute: kinetic profiles $\textbf{fitting} \rightarrow \text{kinetic profiles } \textbf{prediction}$

TGYRO efficiently solves the steady-state transport equation:

$$\Gamma_{neo}(x) + \Gamma_{turb}(x) = \Gamma_{target}(x) = \int_0^x V'(r) S(r) dr$$

- Neoclassical from NEO and turbulent from either TGLF or GYRO

The next step: integrating OMFIT with ITM

Strategy:

- Enable manipulation of CPO data
 - R/W of data from/to the UAL using available Python bindings
- 2 Execution of kepler actors
 - "standalone" kepler actors use text files for I/O

Achieved so far:

- Wrote OMFIT Python class for read/write of I/O files of standalone kepler actors
- Can automatically create OMFIT-ITM interface and execute standalone actor
- Can use UAL but little more work is needed for seamless integration in the OMFIT tree

Live demo

PLEASE WEAR YOUR 3D GLASSES

• Comprehensive OMFIT framework developed and used to support DIII-D with many applications

 Integration with ITM-UAL will allow seamless execution of the codes adhering with the ITM-TF standards

OMFIT-ITM integration prepares ground for GA integrated modeling of ITER

Extra slides

Survey of ideal MHD stability at increased β_n with GATO

Pressure scanned by scaling of P' and ideal MHD stability evaluated for different toroidal mode numbers n and wall distances (conformal wall)

220 GATO simulations run 20 at a time in parallel on 3 different remote machines

Evaluation of whistler waves (also known as 'helicons') current drive efficiency and location with GENRAY

- DIII-D target discharge #122976 with $\beta_n = 3.9$ (high β needed for absorption)
- Automated scan of launched n_{\parallel} and poloidal angle θ of wave injection
- Target compares favorably $(60 \ kA/MW)$ with respect to EC $(16 \ kA/MW)$ and NBI $(26 \ kA/MW)$

High level Python APIs allow users to: execute tasks remotely and in parallel

- Seamless execute codes and and manage files remotely
 - Let codes run codes where they already work!
 - Machine running OMFIT directs and stores data in OMFIT tree
- Parallel execution of the same task with different input parameters, on multiple remote machines
- Real-time monitoring of local / remote and serial / parallel tasks

High level Python APIs allow users to: create Graphical Users Interfaces (GUIs)

User GUIs speed-up routine analysis and hide many of the underlying complexities to inexperienced users

- GUIs are python scripts and are created by users themselves
- Quick and easy! For each GUI entry need to specify the OMFIT tree location associated with it
- GUIs can be nested to create comprehensive GUIs, while ensuring consistency

Quickly visualize data in the OMFIT tree or create publication quality graphics with Python scripts

1D/2D arrays are (over)-plotted with the push of a button

- Inspect inputs/outputs of different analyses / codes / iterations / ...
- Plots are interactive and can be customized (à la MATLAB)

More sophisticated plots are scripted in Python

- Matplotlib library very similar to MATLAB and IDL plot commands
- Plotting scripts can be assigned to specific objects

Access MDS+ data, PTDATA signals and D3DRDB tables directly from the OMFIT tree

- Browse, search, plot and manipulate experimental data interactively or in scripts
- Creation of codes inputs: profiles, power, angles,...
- Validation: compare modeling results with experiments

