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Project – Simulation of Wave Interactions with MHD (SWIM)���
Goals:	


•  Provide a base of experience with framework/component architecture applied 
to integrated fusion simulation that can be factored into the design of a larger-
scale Fusion Simulation Project.  

•  Develop a computational environment that is useful for  a broad range of 
plasma simulation applications (⇒ Is the tool of choice for those performing 
tokamak simulations) 

And adddress physics questions such as:  

•  How does RF control sawtooth instability behavior? → Can the ITER ICRF 
system influence sawteeth? 

•  How does electron cyclotron current drive control Neoclassical Tearing 
Modes? → How much power will it take on ITER? 

Software infrastructure: Integrated Plasma Simulator (IPS)���
A flexible, extensible computational framework capable of coupling state-of-the-art 
models for energy and particle sources, transport, and stability for tokamak core plasma	
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IPS Design Approach – borrows from common component 
architecture (CCA)	


•  Framework/component architecture – written in Python	

–  Flexibility – multiple codes can implement components interchangeably	

–  Extensibility – easy to add components to framework	

–  Components can be tested stand-alone	


•  Components implemented using existing whole codes (usually in 
Fortran) wrapped in standard component interface (written in Python)	

–  Rapid deployment – minimize changes to physics codes to adapt	

–  Avoid bifurcation of physics modules – no SWIM/stand-alone versions	


•  File-based communication	

–  Zero change to physics code – use existing I/O file structures	

–  Avoid name-space/compiler/library incompatibilities between components	


•  Plasma State: official transfer mechanism for time-evolving data that 
must be transferred between components (optional)	


Objective – permit massively parallel physics modules to interoperate 
flexibly and efficiently	
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IPS Architecture	
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Typically simulation data exchanged between components 
through Plasma State module	


•  Fortran 90 Module – supports in-memory or file-based data exchange (netCDF)	

•  Very simple user interface   functions: get, store, commit, merge partial	

•  Other powerful functions available, but not required  e.g. grid interpolation	

•  Supports multiple state instances, partial states	

•  Code is automatically generated from state specification text file  ease and 

accuracy of update	

•  Being shared with other projects	


–  Component-to-component data exchange in TRANSP and PTRANSP	

–  Coupling of neutral beam and fusion product sources to FACETS C/C++ transport 

driver	


More generally “plasma state” consists of a set of files that are managed and 
transported as group by the framework – eg eqdsk files, distribution functions	
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Typical Integrated Plasma Simulation Workflow	


Plasma State Component 

 

 

Simulation Controller Script 

t →t + Δt 

Equilibrium 
and 

transport 
t→t+δt 

RF sources 
sources 

MHD 
stability 

Energetic 
particle 
sources 

(NBI) 

ψ(R,Z)    ………………….Plasma Equilibrium Flux function 
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles 
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF) 
JRF, etc., dJRF/dE||,– …….Current Drive 
 fi(Φ, θ, V||,V⊥), - …………Distribution Function 

Fueling 
particle 
sources 

Anomalous 
transp. Coeff. 

Neoclassical 

Eqbm solver 

Plasma control 

Fokker 
Planck solve 
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Typical Integrated Plasma Simulation Workflow	


Plasma State Component 

 

 

Simulation Driver Component 

t →t + Δt 

Equilibrium 
and 

transport 
t→t+δt 

RF sources 
sources 

MHD 
stability 

Energetic 
particle 
sources 

(NBI) 

ψ(R,Z)    ………………….Plasma Equilibrium Flux function 
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles 
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF) 
JRF, etc., dJRF/dE||,– …….Current Drive 
 fi(Φ, θ, V||,V⊥), - …………Distribution Function 

Fueling 
particle 
sources 

Anomalous 
transp. Coeff. 

Neoclassical 

Eqbm solver 

Plasma control 

Fokker 
Planck solve 

Some components communicate using 
other files – not Plasma State	
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Plasma State Component 

 

 

Simulation Controller Script 

t →t + Δt 

Equilibrium 
and 

transport 
t→t+δt 

RF sources 
sources 

MHD 
stability 

Energetic 
particle 
sources 

(NBI) 

ψ(R,Z)    ………………….Plasma Equilibrium Flux function 
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles 
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF) 
JRF, etc., dJRF/dE||,– …….Current Drive 
 fi(Φ, θ, V||,V⊥), - …………Distribution Function 

Fueling 
particle 
sources 

Anomalous 
transp. Coeff. 

Neoclassical 

Eqbm solver 

Plasma control 

Fokker 
Planck solve 

Some components communicate directly 
to other components:	

In memory data exchange	

Data not through Plasma State	

Control independent of controller script	


Typical Integrated Plasma Simulation Workflow	
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Plasma State Component 

 

 

Equilibrium 
and 

transport 
t→t+δt 

RF sources 
sources 

MHD 
stability 

Energetic 
particle 
sources 

(NBI) 

ψ(R,Z)    ………………….Plasma Equilibrium Flux function 
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles 
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF) 
JRF, etc., dJRF/dE||,– …….Current Drive 
 fi(Φ, θ, V||,V⊥), - …………Distribution Function 

Fueling 
particle 
sources 

Anomalous 
transp. Coeff. 

Neoclassical 

Eqbm solver 

Plasma control 

Fokker 
Planck solve 

TORIC 
GENRAY 
AORSA 

CQL3D 
NUBEAMO
RBITRF 

TSC 
GCNM 
CORSICA 
FASTRAN 

TEQ 
TSC 
EFIT 

DCON 
NOVA-K 
M3D 
NIMROD 

NUBEAM 
FRANTIC 

NCLASS 

GLF23 
MMM 
TGLF 

Integrated Plasma Simulator – Components are implemented 
by mature, well-validated codes	
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Capabilities of the IPS: ���
Why you should love and use the IPS	


•  Driver written in programming language (Python) – allows arbitrarily 
complicated component invocation	


•  Framework does the dirty work for you (provides services)	

–  Configuration management – assembles and connects needed components (config file)	

–  Task management – manages execution of underlying applications	

–  Data management – move/archive component input/output and plasma state files	

–  Resource management – efficiently manages access to computing resources for 

concurrently running processes	

–  Event management – provides asynchronous publish/subscribe model of data 

exchange in running simulation	

–  Supports component Checkpoint/Restart	

–  Task relaunch (prototype) – allows tasks to be relaunched if they have failed with an 

error code	

–  Simulation monitoring – publishes simulation meta-data and events to web-based 

SWIM portal	


•  Monitor component aggregates time-slice data from separate physics 
components into viewable time series	


•  Web based portal provides real-time monitoring of simulation progress and 
convenient archive information on previous runs	
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The IPS framework supports four levels of parallelism	


•  Components can launch parallel jobs – MPI code execution	

•  A component can launch multiple tasks concurrently – e.g. multiple flux 

surfaces or toroidal mode numbers	

•  Multiple components can run concurrently	

•  Multiple simulations can be managed by the framework concurrently – 

share resources allocated to a single batch submission (task pool)	


Many code executions –> one qsub, one que wait	
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When we started, a single long-time-scale ITER simulation, such as below, with 
minimal level of physics detail took up to 6 weeks with serial processor technology	


central electron  
and ion temperatures 

current drive IPlasma 

IBS 
INB 

Power balance 
total 

α	


NBI+ICRF 

radiation 

TSC (Free-Boundary Equilibrium and Profile Advance)	


TORIC (RF Ion Cyclotron) – 32 poloidal Fourier modes (poorly converged)	


NUBEAM (neutral beam injection) – 1,000 Monte Carlo particles (poor statistics)	
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Demonstrating levels of parallelism – ITER simulations 
originally taking ~ 6 weeks with serial codes	


Simulations at very high resolutions to show capability of massive parallelism	

–  TSC +AORSA + NUBEAM (1,000,000 particles/species)	

–  TSC + TORIC (255 poloidal modes) + NUBEAM (1,000,000 particles/species)	

–  running times ~ 30 hr on 1600 cores	


Simulations at resolutions more typical of present practice for comparison	

–  ITER hybrid scenario 	

–  TSC (1 core), TORIC (31 poloidal modes, 4 cores), NUBEAM (5,000 particles/species, 

16 cores)	

–  Typically ramp-up from 1.5 sec into flattop 550 sec	


•  TSC alone – using TSC internal (analytic) models for NBI and ICRF	

–  No parallelism, 1 core, running time ~ 11 hr	


•  TORIC + NUBEAM + TSC – sequential execution of parallel components	

–  One level of parallelism, 16 cores, running time ~ 28 hr	


•  TORIC + NUBEAM + TSC – concurrent execution of parallel components	

–  Two levels of parallelism, 24 cores, running time ~ 12 hr	


•  Parameter study – pedestal location, pedestal height (chi pedestal)	

–  Nine concurrent simulations run simultaneously	

–  Three levels of parallelism, 128 cores, running time ~ 16 hr	
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Checkpoint/Restart – at the simulation and component level work 
together to save and restore the simulation at a given point	


•  String multiple runs together to continue computation from one run to 
another	


•  Use checkpoint/restart as a debugging tool for coupled simulations	


•  Run less interesting physics to a certain point and then examine the following 
physics phase in greater detail (with different components, configurations, 
multiple simulations with different parameters, etc.)	


•  Restructure or load balance simulation to use different components or 
numbers of processes	


And of course recover from failures	


10/28/10 14 
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SWIM Portal Collects Information About SWIM 
Simulations and Serves Multiple Clients	


•  A variety of information being tracked and stored in Relational DB	

–  User name, simulation name current status, code name, last time stamp, wall 

clock time, simulation comment, tokamak, host computer	

–  Supports search and sort	


•  Each simulation is identified with unique RunID	

•  Using MDS+ for data storage	

•  Coming soon – access to experimental data archives, comparison with 

simulations	
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Summary Page Provides Snapshot of Current Status of SWIM 
Simulations (http://swim.gat.com:8080/)	


  
 

 
    

 
Each job has unique run-ID.  Run data archived in MDS+.  Search function allows rapid 
searching through the ~29,000 SWIM runs stored in the system 
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Simulation Details Page Enables You Examine the Every Step 
of Your Run – as it runs	


  
 

 
    

 

Clicking on a run-ID gives a run details page including the ability to view data 
with web graphics 
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Can view all of the plots in the latest monitor file with one click. Can 
download monitor file and get pdf hardcopy of all plots	
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Physics studies with IPS	


•  ITER discharge simulations with massively-parallel RF and neutral beam 
components	


•  Use of IPS to study ECCD resistive tearing mode stabilization and motion of 
flux surfaces – coupling to GENRAY ECH ray tracing to NIMROD nonlinear 
MHD	


•  Use of IPS to study parallelization in time (parareal algorithm) of DTEM 
turbulence, 1.5D transort	


•  Studies of RF driven energetic tail formation on Alcator C-mod	


•  Onset of saturated n = 1, m = 1,2 modes in NSTX – coupling of IPS to M3D	


•  Use of IPS to study control of sawtooth onset time with lower hybrid waves on 
C-mod	




TSC	  (Tokamak	  
Simulator	  Code)	  
(free	  boundary)	  

Discharge	  scenario	  

T,	  n,	  (R,z)eq	  

PF	  coil	  currents	  
feedback	  system	  

H&CD	  profiles	  
NB	  	  	  	  :	  	  NUBEAM	  
ICRH	  :	  TORIC	  
ECRH:	  TORAY,	  GENRAY	  
LH:	  	  	  	  	  	  GENRAY,	  (LSC)	  
3D	  Fokker	  Planck	  CQL3D	  

Transport	  model	  
Coppi-‐Tang,	  CDBM	  

JSOLVER	  (refines	  eq.)	  
BALMSC	  (ballooning)	  
PEST	  (kink)	  

Linear	  MHD	  stability	  
(:me	  slice	  -‐	  offline)	  

Target	  plasma 	  	  
R=6.2,	  a=2.0,	  κ=1.8,	  δ~0.45	  
n/nG>0.75	  

Time-‐dependent	  simulacons	  evolve	  plasma	  equilibrium	  and	  
H&CD	  source	  profiles	  consistently 

IPS	  (Integrated	  Plasma	  Simulator)	  
(fully	  consistent)	  

TRANSP	  (analysis	  loop)	  
	  

EPED1*	  

*	  P.	  Snyder	  



Simulate	  rampup	  and	  relaxacon	  in	  flahop	  	  
to	  self-‐consistently	  study	  	  

kinecc	  profiles	  and	  MHD	  stability	  evolucon	  	  	  
 

•  Ramp-‐up	  phase	  
•  RF	  to	  form	  reverse	  shear	  profiles	  
•  Induccve	  rampup	  scll	  important	  

•  Flat-‐top	  phase	  
•  100%	  non-‐induccve	  current	  
•  Sustain	  moderate	  reverse	  shear	  

•  Radiated	  power	  keeps	  divertor	  loads	  within	  
acceptable	  levels	  
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GENRAY/CQL3D are advanced in a “tight” time 
loop on the transport time scale using the IPS	


TSC	


Plasma state	

ψ(R, Z), T(r), n(r)	
 GENRAY	


CQL3D	

ψ(R, Z), T(r), n(r)	


PLH(R), JLH(r)	


ψ(R, Z),	

T(r), n(r)	


Ray trajectory	

Iteration 
loop 1ms 
on C-Mod	




Off-axis LHCD was used to delay the onset of 
sawteeth during current ramp up in C-Mod [7]	


ne=4 × 1019m-3 (red) 	
 	
ne=9 × 1019m-3 (blue)	

ne=7 × 1019m-3 (green) 	
Ohmic (black) - 9 × 1019m-3	


PLH = 550 kW on 0.2 s	




Time-domain discharge simulation (TSC) coupled with RF (GENRAY) and 
FP (CQL3D) compared with C-Mod nearly full NI LHCD discharge using IPS	


•  Good reproduction of experimental 
plasma parameters, such as Te, and Vloop	


•  q0 > 1 after 1s, while sawtooth was 
suppressed at ~0.98s in the experiment, 
suggesting the current profile evolution is 
modeled consistently	


First, Vloop 
drops at 
center	


Vloop evolution after LH turn-on	


Surface Vloop 
changes later	


(S. Shiraiwa, P. T. Bonoli)	




Many different workflows have been implemented in IPS	


Conventional time loop controlled by driver component	

•  Transport simulations with multiple source components – ITER, Cmod, NSTX	


Time loop controlled by one of the components	

•  Coupling of NIMROD with GENRAY to study ECCD stabilization of tearimg 

modes	


Iteration loop, rather than time loop	

•  FASTRAN with TGLF transport and source components iterating to self 

consistency	


Concurrent execution within component	

•  Full ICRF antennal toroidal mode spectrum concurrent with TORIC	


Parareal – hybrid time/iteration loop with logic embedded in components.	

•  An iterative algorithm for parallelization over time	

•  Time domain divided into chunks, iterative correction of time chunks run 

concurrently	

•  Multiple time chunks at different iteration levels running concurrently	

•  Debasmita Samaddar is the expert	
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Optimization and paramater scans 
with IPS/Dakota	
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NIMROD/GENRAY coupling in IPS – NIMROD is run as a 
service, but controls time loop via simulation event handling	

	


NIMROD	

step 0	


NIMROD	

step 1	


• NIMROD exports 
magnetic geometry and 
n,T profiles to Plasma 
State	


• GENRAY then calculates 
RF propagation and 
power deposition; 
exporting these 
quantities to the Plasma 
State	


  	

• NIMROD converts 
GENRAY data into 
momentum and energy 
source terms.	


• Ultimately will include 
kinetic closure model	


Time	
 Plasma State	


…	


NIMROD	

step n	


NIMROD	

step n+1	


Plasma State	


Plasma State	


� � �	


IPS	

Monitor	

step 0	


Monitor	

step n+1	


Monitor	

step n	


GENRAY	

run 2	


GENRAY	

 run 1	


Two levels of parallelism – parallel NIMROD run concurrently with GENRAY 	




In the absence of toroidal rotation, fixed RF 
stabilizes the resistive TM only temporarily 

0.5 1 1.5 2 2.5 3

!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

t = 0.103 s, saturated islands   

1.2 1.4 1.6 1.8 2 2.2 2.4

!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

t = 0.137 s, X!point inside island   

1.2 1.4 1.6 1.8 2 2.2 2.4

!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

t = 0.148 s, new island   

!12
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0

2
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 [
! 
B

2
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2
 µ

0
) 

d
V

]

Magnetic energy of toroidal Fourier components

 

 

Offset = !0.05 cm

n = 1

n = 2

n = 3

n = 4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

Time (s)

RF time dependence

�Inject RF at O-point of saturated 
(2,1) island 
 
�(4,2) island forms, mode energy 
decreases (stabilization?) 
 
�(2,1) island with different O-point 
grows up again 

�Here, island size and RF hotspot size are initially comparable. 



The control system is an additional physics 
component in the coupled simulation 

QL Component  
�Calculates quasilinear 

diffusion coefficients 
from RF/geometric data 

Extended MHD 
Component 
(NIMROD) 

�Runs continuously 
-Sends xMHD  

profiles/synthetic  
diagnostic data 
(e.g. Mirnov coil 

signals) to control 
system 

 
 
 

Plasma Control 
System 

�Runs continuously 
-monitors mode  

growth & amplitude 
-determines if RF is 
presently needed 

-moves RF as needed 
�Controls RF inputs 

to NIMROD 

RF Component 
(GENRAY) 

�Calculates wave 
trajectories through 

evolving xMHD profiles 
on demand 

Integrated Plasma Simulator  
         (IPS) framework  
-manages execution of components and data transfer 

Tim
e 

�All physics components run in a larger simulation framework (IPS) 

�Explicit coupling exploits the timescale separation between RF and xMHD 



Initial results of coupled simulations are promising 

�Control system aligns 
RF, halts mode growth, 
shrinks island. 
 
�Growth resumes when 
RF is shut off. 

DIII-D shot 122898 
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What do you need to run an IPS simulation?	

Access to IPS	
 Casual user: Use common build ���

Power User: Make your own. Check out from svn repository. 
(Available open sourceo n Source Forge) Do top level make	


A set of  physics 
components	


Physics executables + wrapper codes to connect to IPS and access 
Plasma State	

Casual user: Use existing physics components	

Power User: Add new, or modify existing component	

Get binary of physics executable from code developer (maybe you)���
Adapt existing component wrappers	


Standard input files for 
physics codes	


These are just the input files you would use to run the code stand-
alone.	

Casual user/power user: modify an existing file	

	


A simulation 
configuration file	


A text file that specifies: meta-data about the simulations (run name, 
run directory, files constituting plasma state…), and configuration of 
individual components (specific implementation of component, input 
data path, top-level operational parameters …)	

Casual user/power user: modify an existing file	


A batch submission file	
 A simple (~10 lines) script specifying number of processors, and config 
file for this simulation, …	

Casual user/power user: modify an existing file	




What is an IPS run?	


•  Submit batch run – qsub	


•  Sit back and watch your run go on web portal  (or get coffee)	

	

What do you get? A simulation run directory containing everything���
 This includes:	

•  Simulation configuration file used for run – provenance	


•  All of the input files used to create the run – provenance	


•  All of the Python component scripts used in the run – provenance	


•  All of the output files generated by all of the components at each time-
step, iteration, or whatever.  Under user control.	


•  All of the files declared to be plasma state for each time-step	


•  If using SWIM Plasma State and monitor component you get selected 
plasma state data aggregated into time history in a single file.	
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IPS is the inverse of FSP(R.I.P.) – bottom up rather than top 
down	


•  We have a small amount of OFES funding to keep IPS functional, 
maintain the GA web portal, support users, make minor 
improvements as required by users	


•  We have a number of users from outside the SWIM project – 
PPPL, MIT, JET (Samaddar), GA	


•  We have users outside fusion – lithium battery simulation	


•  There is tremendous flexibility available within the IPS,  but using 
it is optional	


•  IPS is simple to use if you want to run a previously set up 
workflow	


•  IPS is useful for constructing workflows even for small, serial 
codes, but it’s real strength is in effectively coupling large, highly 
parallel modules	
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Summary of IPS framework	


•  SWIM has emphasized, coupling of large-scale, coarse-granularity 
components → I believe that integrated simulations will always have some 
element of such coarse granularity, especially useful for runtime debugging	


•  IPS written in Python, no third party libraries → runs anywhere (although 
complicated to build Plasma State, requires NTCC libraries)	


•  Have demonstrated a wide variety of simulation work-flows	


What we haven’t done	

•  No formal/automated regression testing	


•  Sketchy data management and provenance tracking – but improving	


•  Tight coupling → it hasn’t come up yet at inter-component level, support 
tightly coupled, composite components	


•  No GUI → although working with SECAD SBIR to look at automated config	
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Lessons learned about integrated simulation	


•  The system works – we’ve been able to get multiple, MPP codes to play 
together nice	


•  You can get quite far with loose coupling and file-based communication.  
Even the Slow MHD campaign, non-linear MHD ↔ ECH RF, is not 
requiring close, in-memory coupling.	


•  But some things should be coupled in memory – we learned early on that 
iteration of 1.5D transport, transport coefficient calculation, and MHD 
equilibrium must be coupled in memory.  → composite, implicit, tightly 
coupled component	


•  Because components vary widely in their parallelizability (RF solvers → 
1,000s - 10,000s of processors, 1.5D transport ~ 1 processor), load balancing 
is a major issue. → IPS framework manages processor resource pool, allows 
multiple concurrent executions	


•  New ways of using component codes, even widely used and thoroughly 
tested ones,  uncovers new bugs and failure modes, → It takes a lot longer to 
get things going than you would have thought, but then “no pain, no gain”	




Extra slides	
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Goal: demonstrate the use of massively-parallel computers to accelerate ITER 
simulations, while improving the level of physics fidelity of the simulations. 

Coupling of TSC (Free-Boundary 
Equilibrium and Profile Advance) 	


AORSA (massively parallel RF 
Ion Cyclotron solver) - 256×256 
poloidal Fourier modes 	


TORIC (semi-spectral ICRF 
solver) – 147 poloidal modes, 409 
radial nodes	


NUBEAM (parallel neutral beam 
injection) – 1,000,000 Monte 
Carlo particles	


	


These simulations benefit from component level concurrency to minimize 
time in (near) serial operations	
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Component execution times and task processor usage for 9 
interleaved simulations on NERSC Franklin	


•  Average processor usage for first 200 sec of simulation is about 58%.  Is this good?	

•  Can I know how many simultaneous simulations to run and how many cores to use?	

•  A resource usage simulator (RUS) was created to simulate resource utilization of 

SWIM workloads – gives guidance for choosing processor count/component, 
number of simulations, etc  

Execution time for IPS tasks	

Processor utilization for 9-
simulation parameter scan	
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Tales from the parareal – simple algorithm that allows parallelization in time 
sometimes      (J. Lyons, Y. Mayday, G. Turinici, CR Acad. Sci. I – Math 332, (2001), 661-668)	


Consider time evolution problem:	

Define:	

Assume have two time advance operators: 	


           fine – accurate but takes a long time to run	

           coarse – inaccurate but runs very quickly	


The method is based on the iteration scheme:	

	

	

	

Example:	


du
dt

= F(u), u(0) = u0
Tn = nΔT , un = u(Tn )

un+1 = Fn,ΔT (un )Fn,ΔT
Gn,ΔT un+1 ~ Gn,ΔT (un )

u0n+1 = Gn,ΔT (u
0
n )

uk+1n+1 = Gn,ΔT (un
k+1) + Fn,ΔT (un

k ) −Gn,ΔT (un
k )

du
dt

− λu = sin(5πt) ≡ Fn,ΔT
du
dt

− λu = 0 ≡ Gn,ΔT
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Can parareal be used to accelerate real physics calculations (e.g evolution of fully 
developed turbulence)? → BETA a pseudo-spectral solver for model DTEM physics	


•  Fine solver based on Hasagawa-Mima:	


	

•  For the coarse solver use same equation as fine solver, but:	


–  Reduce spatial resolution: ~half	

–  Faster, less precise time integrator:  4th order RK instead of VODPK	

–  Change dissipation scale	


•  For projection from fine to coarse solution → truncation	


•  For lifting from coarse to fine solution → match spectral slope, use random phase; other 
wise, keep high order coefficients from previous iteration	


•  For convergence → total mode energy was shown to be a good proxy for convergence of 
low k modes.  Thus only one convergence measure was needed. 	


•  Initially implemented entirely in MPI (very complicated) – Samaddar, Newman, Sanchez, 
J. Comp Phys 229 (2010) 6558-6573	
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The parareal algorithm was re-implemented in the IPS without 
modification to the IPS → much more straightforward implementation	


•  IPS implementation:	

–  Three IPS components (no plasma state) – fine solver, coarse solver, convergence test	

–  Task pool manager – efficiently handles parallel executions of fine solver	

–  Traditional loop control – iteration loop, not time loop	

–  Two levels of parallelism – MPI coarse and fine solver codes, multiple instances of fine 

solver component	

•  Dividing the simulation time interval into 160 slices, convergence was obtained in 

14 iterations for a reduction of simulation time of about ×6	


Suffers from inefficiency during long 
run of coarse solver	
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Innovative modification of the parareal workflow using IPS  results 
in added factor of 2 improvement of efficiency and run time 	

•  Obvious observation (but for years nobody observed it) – You don’t have 

to wait for all coarse solves to complete before starting the iteration and 
the next round of fine solves. → You can interleave them	


•  Three levels of parallelism – MPI coarse and fine solver codes, multiple 
instances of coarse and fine solver components, concurrent execution of 
coarse solver, fine solver and convergence components	


•  Completely event driven → No traditional loop	

	

	


Is this the route to turbulence 
modeling on the transport time 
scale or extended MHD studies 
at ITER relevant Lundquist 
numbers?  Might be.	


Presently being used with 
gyrokinetics code GENE	



