
11/20/13	
DBB	
 1	

	

November 2013	

JET, EFDA ITM Code Camp 	

	

D. B. Batchelor, L. A. Berry, E. F. Jaeger, D. A. Spong – ORNL Fusion Energy	

W. Elwasif, D. E. Bernholdt, E. D’Azevedo, S. Foley (NCCS) – ORNL Computer Science	

S. C. Jardin, E. Feibush, D. McCune, J. Chen, L. P Ku, M. Chance, J. Breslau, F. Poli – PPPL	

G. Abla, M. Choi, D. P. Schissel – General Atomics , R. W. Harvey – CompX	

R. Bramley– Indiana University, D. Keyes – Columbia University, D. Schnack – U. Wisconsin	

P. T. Bonoli, J. Ramos, J.Wright – MIT, S. Kruger, T. Jenkins – TechX, G. Bateman – Lehigh University	

	

Unfunded participants: 	

D. Samaddar – U. Alaska, ITER IO, JET	

L. Sugiyama – MIT, J. D. Callen, C. C. Hegna, C. Sovinec – University of Wisconsin, E. Held – Utah State	

H. St. John – General Atomics, A. Kritz – Lehigh Univ.	

	

The Integrated Plasma Simulator: A flexible framework for
coupled fusion simulations	

See our fun website at:���
 www.cswim.org	

11/20/13	
DBB	
 2	

Project – Simulation of Wave Interactions with MHD (SWIM)���
Goals:	

•  Provide a base of experience with framework/component architecture applied
to integrated fusion simulation that can be factored into the design of a larger-
scale Fusion Simulation Project.

•  Develop a computational environment that is useful for a broad range of
plasma simulation applications (⇒ Is the tool of choice for those performing
tokamak simulations)

And adddress physics questions such as:

•  How does RF control sawtooth instability behavior? → Can the ITER ICRF
system influence sawteeth?

•  How does electron cyclotron current drive control Neoclassical Tearing
Modes? → How much power will it take on ITER?

Software infrastructure: Integrated Plasma Simulator (IPS)���
A flexible, extensible computational framework capable of coupling state-of-the-art
models for energy and particle sources, transport, and stability for tokamak core plasma	

11/20/13	
DBB	
 3	

IPS Design Approach – borrows from common component
architecture (CCA)	

•  Framework/component architecture – written in Python	

–  Flexibility – multiple codes can implement components interchangeably	

–  Extensibility – easy to add components to framework	

–  Components can be tested stand-alone	

•  Components implemented using existing whole codes (usually in
Fortran) wrapped in standard component interface (written in Python)	

–  Rapid deployment – minimize changes to physics codes to adapt	

–  Avoid bifurcation of physics modules – no SWIM/stand-alone versions	

•  File-based communication	

–  Zero change to physics code – use existing I/O file structures	

–  Avoid name-space/compiler/library incompatibilities between components	

•  Plasma State: official transfer mechanism for time-evolving data that
must be transferred between components (optional)	

Objective – permit massively parallel physics modules to interoperate
flexibly and efficiently	

11/20/13	
DBB	
 4	

IPS Architecture	

11/20/13	
DBB	
 5	

Typically simulation data exchanged between components
through Plasma State module	

•  Fortran 90 Module – supports in-memory or file-based data exchange (netCDF)	

•  Very simple user interface functions: get, store, commit, merge partial	

•  Other powerful functions available, but not required e.g. grid interpolation	

•  Supports multiple state instances, partial states	

•  Code is automatically generated from state specification text file ease and

accuracy of update	

•  Being shared with other projects	

–  Component-to-component data exchange in TRANSP and PTRANSP	

–  Coupling of neutral beam and fusion product sources to FACETS C/C++ transport

driver	

More generally “plasma state” consists of a set of files that are managed and
transported as group by the framework – eg eqdsk files, distribution functions	

11/20/13	
DBB	
 6	

Typical Integrated Plasma Simulation Workflow	

Plasma State Component

Simulation Controller Script

t →t + Δt

Equilibrium
and

transport
t→t+δt

RF sources
sources

MHD
stability

Energetic
particle
sources

(NBI)

ψ(R,Z) ………………….Plasma Equilibrium Flux function
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF)
JRF, etc., dJRF/dE||,– …….Current Drive
 fi(Φ, θ, V||,V⊥), - …………Distribution Function

Fueling
particle
sources

Anomalous
transp. Coeff.

Neoclassical

Eqbm solver

Plasma control

Fokker
Planck solve

11/20/13	
DBB	
 7	

Typical Integrated Plasma Simulation Workflow	

Plasma State Component

Simulation Driver Component

t →t + Δt

Equilibrium
and

transport
t→t+δt

RF sources
sources

MHD
stability

Energetic
particle
sources

(NBI)

ψ(R,Z) ………………….Plasma Equilibrium Flux function
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF)
JRF, etc., dJRF/dE||,– …….Current Drive
 fi(Φ, θ, V||,V⊥), - …………Distribution Function

Fueling
particle
sources

Anomalous
transp. Coeff.

Neoclassical

Eqbm solver

Plasma control

Fokker
Planck solve

Some components communicate using
other files – not Plasma State	

11/20/13	
DBB	
 8	

Plasma State Component

Simulation Controller Script

t →t + Δt

Equilibrium
and

transport
t→t+δt

RF sources
sources

MHD
stability

Energetic
particle
sources

(NBI)

ψ(R,Z) ………………….Plasma Equilibrium Flux function
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF)
JRF, etc., dJRF/dE||,– …….Current Drive
 fi(Φ, θ, V||,V⊥), - …………Distribution Function

Fueling
particle
sources

Anomalous
transp. Coeff.

Neoclassical

Eqbm solver

Plasma control

Fokker
Planck solve

Some components communicate directly
to other components:	

In memory data exchange	

Data not through Plasma State	

Control independent of controller script	

Typical Integrated Plasma Simulation Workflow	

11/20/13	
DBB	
 9	

Plasma State Component

Equilibrium
and

transport
t→t+δt

RF sources
sources

MHD
stability

Energetic
particle
sources

(NBI)

ψ(R,Z) ………………….Plasma Equilibrium Flux function
σi(Φ), Ni(Φ), ι(Φ), Ωi(Φ) – Plasma Profiles
Ii, SRF, SNBI, Sα, etc. – …...Source Terms (NB, RF)
JRF, etc., dJRF/dE||,– …….Current Drive
 fi(Φ, θ, V||,V⊥), - …………Distribution Function

Fueling
particle
sources

Anomalous
transp. Coeff.

Neoclassical

Eqbm solver

Plasma control

Fokker
Planck solve

TORIC
GENRAY
AORSA

CQL3D
NUBEAMO
RBITRF

TSC
GCNM
CORSICA
FASTRAN

TEQ
TSC
EFIT

DCON
NOVA-K
M3D
NIMROD

NUBEAM
FRANTIC

NCLASS

GLF23
MMM
TGLF

Integrated Plasma Simulator – Components are implemented
by mature, well-validated codes	

11/20/13	
DBB	
 10	

Capabilities of the IPS: ���
Why you should love and use the IPS	

•  Driver written in programming language (Python) – allows arbitrarily
complicated component invocation	

•  Framework does the dirty work for you (provides services)	

–  Configuration management – assembles and connects needed components (config file)	

–  Task management – manages execution of underlying applications	

–  Data management – move/archive component input/output and plasma state files	

–  Resource management – efficiently manages access to computing resources for

concurrently running processes	

–  Event management – provides asynchronous publish/subscribe model of data

exchange in running simulation	

–  Supports component Checkpoint/Restart	

–  Task relaunch (prototype) – allows tasks to be relaunched if they have failed with an

error code	

–  Simulation monitoring – publishes simulation meta-data and events to web-based

SWIM portal	

•  Monitor component aggregates time-slice data from separate physics
components into viewable time series	

•  Web based portal provides real-time monitoring of simulation progress and
convenient archive information on previous runs	

11/20/13	
DBB	
 11	

The IPS framework supports four levels of parallelism	

•  Components can launch parallel jobs – MPI code execution	

•  A component can launch multiple tasks concurrently – e.g. multiple flux

surfaces or toroidal mode numbers	

•  Multiple components can run concurrently	

•  Multiple simulations can be managed by the framework concurrently –

share resources allocated to a single batch submission (task pool)	

Many code executions –> one qsub, one que wait	

11/20/13	
DBB	
 12	

When we started, a single long-time-scale ITER simulation, such as below, with
minimal level of physics detail took up to 6 weeks with serial processor technology	

central electron
and ion temperatures

current drive IPlasma

IBS
INB

Power balance
total

α	

NBI+ICRF

radiation

TSC (Free-Boundary Equilibrium and Profile Advance)	

TORIC (RF Ion Cyclotron) – 32 poloidal Fourier modes (poorly converged)	

NUBEAM (neutral beam injection) – 1,000 Monte Carlo particles (poor statistics)	

11/20/13	
DBB	
 13	

Demonstrating levels of parallelism – ITER simulations
originally taking ~ 6 weeks with serial codes	

Simulations at very high resolutions to show capability of massive parallelism	

–  TSC +AORSA + NUBEAM (1,000,000 particles/species)	

–  TSC + TORIC (255 poloidal modes) + NUBEAM (1,000,000 particles/species)	

–  running times ~ 30 hr on 1600 cores	

Simulations at resolutions more typical of present practice for comparison	

–  ITER hybrid scenario 	

–  TSC (1 core), TORIC (31 poloidal modes, 4 cores), NUBEAM (5,000 particles/species,

16 cores)	

–  Typically ramp-up from 1.5 sec into flattop 550 sec	

•  TSC alone – using TSC internal (analytic) models for NBI and ICRF	

–  No parallelism, 1 core, running time ~ 11 hr	

•  TORIC + NUBEAM + TSC – sequential execution of parallel components	

–  One level of parallelism, 16 cores, running time ~ 28 hr	

•  TORIC + NUBEAM + TSC – concurrent execution of parallel components	

–  Two levels of parallelism, 24 cores, running time ~ 12 hr	

•  Parameter study – pedestal location, pedestal height (chi pedestal)	

–  Nine concurrent simulations run simultaneously	

–  Three levels of parallelism, 128 cores, running time ~ 16 hr	

11/20/13	
DBB	
 14	

Checkpoint/Restart – at the simulation and component level work
together to save and restore the simulation at a given point	

•  String multiple runs together to continue computation from one run to
another	

•  Use checkpoint/restart as a debugging tool for coupled simulations	

•  Run less interesting physics to a certain point and then examine the following
physics phase in greater detail (with different components, configurations,
multiple simulations with different parameters, etc.)	

•  Restructure or load balance simulation to use different components or
numbers of processes	

And of course recover from failures	

10/28/10 14

11/20/13	
DBB	
 15	

SWIM Portal Collects Information About SWIM
Simulations and Serves Multiple Clients	

•  A variety of information being tracked and stored in Relational DB	

–  User name, simulation name current status, code name, last time stamp, wall

clock time, simulation comment, tokamak, host computer	

–  Supports search and sort	

•  Each simulation is identified with unique RunID	

•  Using MDS+ for data storage	

•  Coming soon – access to experimental data archives, comparison with

simulations	

11/20/13	
DBB	
 16	

SWIM Portal Collects Information About SWIM
Simulations and Serves Multiple Clients	

•  A variety of information being tracked and stored in Relational DB	

–  User name, simulation name current status, code name, last time stamp, wall

clock time, simulation comment, tokamak, host computer	

–  Supports search and sort	

•  Each simulation is identified with unique RunID	

•  Using MDS+ for data storage	

•  Coming soon – access to experimental data archives, comparison with

simulations	

11/20/13	
DBB	
 17	

Summary Page Provides Snapshot of Current Status of SWIM
Simulations (http://swim.gat.com:8080/)	

Each job has unique run-ID. Run data archived in MDS+. Search function allows rapid
searching through the ~29,000 SWIM runs stored in the system

11/20/13	
DBB	
 18	

Simulation Details Page Enables You Examine the Every Step
of Your Run – as it runs	

Clicking on a run-ID gives a run details page including the ability to view data
with web graphics

11/20/13	
DBB	
 19	

Simulation Details Page Enables You Examine the Every Step
of Your Run – as it runs	

Clicking on a run-ID gives a run details page including the ability to view data
with web graphics

11/20/13	
DBB	
 20	

Can view all of the plots in the latest monitor file with one click. Can
download monitor file and get pdf hardcopy of all plots	

11/20/13	
DBB	
 21	

Physics studies with IPS	

•  ITER discharge simulations with massively-parallel RF and neutral beam
components	

•  Use of IPS to study ECCD resistive tearing mode stabilization and motion of
flux surfaces – coupling to GENRAY ECH ray tracing to NIMROD nonlinear
MHD	

•  Use of IPS to study parallelization in time (parareal algorithm) of DTEM
turbulence, 1.5D transort	

•  Studies of RF driven energetic tail formation on Alcator C-mod	

•  Onset of saturated n = 1, m = 1,2 modes in NSTX – coupling of IPS to M3D	

•  Use of IPS to study control of sawtooth onset time with lower hybrid waves on
C-mod	

TSC	 (Tokamak	
Simulator	 Code)	
(free	 boundary)	

Discharge	 scenario	

T,	 n,	 (R,z)eq	

PF	 coil	 currents	
feedback	 system	

H&CD	 profiles	
NB	 	 	 	 :	 	 NUBEAM	
ICRH	 :	 TORIC	
ECRH:	 TORAY,	 GENRAY	
LH:	 	 	 	 	 	 GENRAY,	 (LSC)	
3D	 Fokker	 Planck	 CQL3D	

Transport	 model	
Coppi-‐Tang,	 CDBM	

JSOLVER	 (refines	 eq.)	
BALMSC	 (ballooning)	
PEST	 (kink)	

Linear	 MHD	 stability	
(:me	 slice	 -‐	 offline)	

Target	 plasma 	 	
R=6.2,	 a=2.0,	 κ=1.8,	 δ~0.45	
n/nG>0.75	

Time-‐dependent	 simulacons	 evolve	 plasma	 equilibrium	 and	
H&CD	 source	 profiles	 consistently

IPS	 (Integrated	 Plasma	 Simulator)	
(fully	 consistent)	

TRANSP	 (analysis	 loop)	
	

EPED1*	

*	 P.	 Snyder	

Simulate	 rampup	 and	 relaxacon	 in	 flahop	 	
to	 self-‐consistently	 study	 	

kinecc	 profiles	 and	 MHD	 stability	 evolucon	 	 	

•  Ramp-‐up	 phase	
•  RF	 to	 form	 reverse	 shear	 profiles	
•  Induccve	 rampup	 scll	 important	

•  Flat-‐top	 phase	
•  100%	 non-‐induccve	 current	
•  Sustain	 moderate	 reverse	 shear	

•  Radiated	 power	 keeps	 divertor	 loads	 within	
acceptable	 levels	

0

50

100

p
o

w
e

r
(M

W
)

100 200 300 400 500
0

5

10

time (s)

c
u

rr
e

n
t

(M
A

)

L-mode

total

alphas
NB

LH

radiation
EC

non inductive

bootstrap

NBCD
LHCD

ECCD

GENRAY/CQL3D are advanced in a “tight” time
loop on the transport time scale using the IPS	

TSC	

Plasma state	

ψ(R, Z), T(r), n(r)	
 GENRAY	

CQL3D	

ψ(R, Z), T(r), n(r)	

PLH(R), JLH(r)	

ψ(R, Z),	

T(r), n(r)	

Ray trajectory	

Iteration
loop 1ms
on C-Mod	

Off-axis LHCD was used to delay the onset of
sawteeth during current ramp up in C-Mod [7]	

ne=4 × 1019m-3 (red) 	
 	
ne=9 × 1019m-3 (blue)	

ne=7 × 1019m-3 (green) 	
Ohmic (black) - 9 × 1019m-3	

PLH = 550 kW on 0.2 s	

Time-domain discharge simulation (TSC) coupled with RF (GENRAY) and
FP (CQL3D) compared with C-Mod nearly full NI LHCD discharge using IPS	

•  Good reproduction of experimental
plasma parameters, such as Te, and Vloop	

•  q0 > 1 after 1s, while sawtooth was
suppressed at ~0.98s in the experiment,
suggesting the current profile evolution is
modeled consistently	

First, Vloop
drops at
center	

Vloop evolution after LH turn-on	

Surface Vloop
changes later	

(S. Shiraiwa, P. T. Bonoli)	

Many different workflows have been implemented in IPS	

Conventional time loop controlled by driver component	

•  Transport simulations with multiple source components – ITER, Cmod, NSTX	

Time loop controlled by one of the components	

•  Coupling of NIMROD with GENRAY to study ECCD stabilization of tearimg

modes	

Iteration loop, rather than time loop	

•  FASTRAN with TGLF transport and source components iterating to self

consistency	

Concurrent execution within component	

•  Full ICRF antennal toroidal mode spectrum concurrent with TORIC	

Parareal – hybrid time/iteration loop with logic embedded in components.	

•  An iterative algorithm for parallelization over time	

•  Time domain divided into chunks, iterative correction of time chunks run

concurrently	

•  Multiple time chunks at different iteration levels running concurrently	

•  Debasmita Samaddar is the expert	

11/20/13	
DBB	
 27	

Many different workflows have been implemented in IPS	

Conventional time loop controlled by driver component	

•  Transport simulations with multiple source components – ITER, Cmod, NSTX	

Time loop controlled by one of the components	

•  Coupling of NIMROD with GENRAY to study ECCD stabilization of tearimg

modes	

Iteration loop, rather than time loop	

•  FASTRAN with TGLF transport and source components iterating to self

consistency	

Concurrent execution within component	

•  Full ICRF antennal toroidal mode spectrum concurrent with TORIC	

Parareal – hybrid time/iteration loop with logic embedded in components.	

•  An iterative algorithm for parallelization over time	

•  Time domain divided into chunks, iterative correction of time chunks run

concurrently	

•  Multiple time chunks at different iteration levels running concurrently	

•  Debasmita Samaddar is the expert	

11/20/13	
DBB	
 28	

Optimization and paramater scans
with IPS/Dakota	

11/20/13	
DBB	
 29	

NIMROD/GENRAY coupling in IPS – NIMROD is run as a
service, but controls time loop via simulation event handling	

	

NIMROD	

step 0	

NIMROD	

step 1	

• NIMROD exports
magnetic geometry and
n,T profiles to Plasma
State	

• GENRAY then calculates
RF propagation and
power deposition;
exporting these
quantities to the Plasma
State	

 	

• NIMROD converts
GENRAY data into
momentum and energy
source terms.	

• Ultimately will include
kinetic closure model	

Time	
 Plasma State	

…	

NIMROD	

step n	

NIMROD	

step n+1	

Plasma State	

Plasma State	

� � �	

IPS	

Monitor	

step 0	

Monitor	

step n+1	

Monitor	

step n	

GENRAY	

run 2	

GENRAY	

 run 1	

Two levels of parallelism – parallel NIMROD run concurrently with GENRAY 	

In the absence of toroidal rotation, fixed RF
stabilizes the resistive TM only temporarily

0.5 1 1.5 2 2.5 3

!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

t = 0.103 s, saturated islands

1.2 1.4 1.6 1.8 2 2.2 2.4

!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

t = 0.137 s, X!point inside island

1.2 1.4 1.6 1.8 2 2.2 2.4

!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

t = 0.148 s, new island

!12

!10

!8

!6

!4

!2

0

2

ln
 [
!
B

2
/(

2
 µ

0
)

d
V

]

Magnetic energy of toroidal Fourier components

Offset = !0.05 cm

n = 1

n = 2

n = 3

n = 4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

Time (s)

RF time dependence

�Inject RF at O-point of saturated
(2,1) island

�(4,2) island forms, mode energy
decreases (stabilization?)

�(2,1) island with different O-point
grows up again

�Here, island size and RF hotspot size are initially comparable.

The control system is an additional physics
component in the coupled simulation

QL Component
�Calculates quasilinear

diffusion coefficients
from RF/geometric data

Extended MHD
Component
(NIMROD)

�Runs continuously
-Sends xMHD

profiles/synthetic
diagnostic data
(e.g. Mirnov coil

signals) to control
system

Plasma Control
System

�Runs continuously
-monitors mode

growth & amplitude
-determines if RF is
presently needed

-moves RF as needed
�Controls RF inputs

to NIMROD

RF Component
(GENRAY)

�Calculates wave
trajectories through

evolving xMHD profiles
on demand

Integrated Plasma Simulator
 (IPS) framework
-manages execution of components and data transfer

Tim
e

�All physics components run in a larger simulation framework (IPS)

�Explicit coupling exploits the timescale separation between RF and xMHD

Initial results of coupled simulations are promising

�Control system aligns
RF, halts mode growth,
shrinks island.

�Growth resumes when
RF is shut off.

DIII-D shot 122898

11/20/13	
DBB	
 33	

What do you need to run an IPS simulation?	

Access to IPS	
 Casual user: Use common build ���

Power User: Make your own. Check out from svn repository.
(Available open sourceo n Source Forge) Do top level make	

A set of physics
components	

Physics executables + wrapper codes to connect to IPS and access
Plasma State	

Casual user: Use existing physics components	

Power User: Add new, or modify existing component	

Get binary of physics executable from code developer (maybe you)���
Adapt existing component wrappers	

Standard input files for
physics codes	

These are just the input files you would use to run the code stand-
alone.	

Casual user/power user: modify an existing file	

	

A simulation
configuration file	

A text file that specifies: meta-data about the simulations (run name,
run directory, files constituting plasma state…), and configuration of
individual components (specific implementation of component, input
data path, top-level operational parameters …)	

Casual user/power user: modify an existing file	

A batch submission file	
 A simple (~10 lines) script specifying number of processors, and config
file for this simulation, …	

Casual user/power user: modify an existing file	

What is an IPS run?	

•  Submit batch run – qsub	

•  Sit back and watch your run go on web portal (or get coffee)	

	

What do you get? A simulation run directory containing everything���
 This includes:	

•  Simulation configuration file used for run – provenance	

•  All of the input files used to create the run – provenance	

•  All of the Python component scripts used in the run – provenance	

•  All of the output files generated by all of the components at each time-
step, iteration, or whatever. Under user control.	

•  All of the files declared to be plasma state for each time-step	

•  If using SWIM Plasma State and monitor component you get selected
plasma state data aggregated into time history in a single file.	

11/20/13	
DBB	
 34	

IPS is the inverse of FSP(R.I.P.) – bottom up rather than top
down	

•  We have a small amount of OFES funding to keep IPS functional,
maintain the GA web portal, support users, make minor
improvements as required by users	

•  We have a number of users from outside the SWIM project –
PPPL, MIT, JET (Samaddar), GA	

•  We have users outside fusion – lithium battery simulation	

•  There is tremendous flexibility available within the IPS, but using
it is optional	

•  IPS is simple to use if you want to run a previously set up
workflow	

•  IPS is useful for constructing workflows even for small, serial
codes, but it’s real strength is in effectively coupling large, highly
parallel modules	

11/20/13	
DBB	
 35	

11/20/13	
DBB	
 36	

Summary of IPS framework	

•  SWIM has emphasized, coupling of large-scale, coarse-granularity
components → I believe that integrated simulations will always have some
element of such coarse granularity, especially useful for runtime debugging	

•  IPS written in Python, no third party libraries → runs anywhere (although
complicated to build Plasma State, requires NTCC libraries)	

•  Have demonstrated a wide variety of simulation work-flows	

What we haven’t done	

•  No formal/automated regression testing	

•  Sketchy data management and provenance tracking – but improving	

•  Tight coupling → it hasn’t come up yet at inter-component level, support
tightly coupled, composite components	

•  No GUI → although working with SECAD SBIR to look at automated config	

11/20/13	
DBB	
 37	

Lessons learned about integrated simulation	

•  The system works – we’ve been able to get multiple, MPP codes to play
together nice	

•  You can get quite far with loose coupling and file-based communication.
Even the Slow MHD campaign, non-linear MHD ↔ ECH RF, is not
requiring close, in-memory coupling.	

•  But some things should be coupled in memory – we learned early on that
iteration of 1.5D transport, transport coefficient calculation, and MHD
equilibrium must be coupled in memory. → composite, implicit, tightly
coupled component	

•  Because components vary widely in their parallelizability (RF solvers →
1,000s - 10,000s of processors, 1.5D transport ~ 1 processor), load balancing
is a major issue. → IPS framework manages processor resource pool, allows
multiple concurrent executions	

•  New ways of using component codes, even widely used and thoroughly
tested ones, uncovers new bugs and failure modes, → It takes a lot longer to
get things going than you would have thought, but then “no pain, no gain”	

Extra slides	

11/20/13	
DBB	
 38	

11/20/13	
DBB	
 39	

Goal: demonstrate the use of massively-parallel computers to accelerate ITER
simulations, while improving the level of physics fidelity of the simulations.

Coupling of TSC (Free-Boundary
Equilibrium and Profile Advance) 	

AORSA (massively parallel RF
Ion Cyclotron solver) - 256×256
poloidal Fourier modes 	

TORIC (semi-spectral ICRF
solver) – 147 poloidal modes, 409
radial nodes	

NUBEAM (parallel neutral beam
injection) – 1,000,000 Monte
Carlo particles	

	

These simulations benefit from component level concurrency to minimize
time in (near) serial operations	

11/20/13	
DBB	
 40	

Component execution times and task processor usage for 9
interleaved simulations on NERSC Franklin	

•  Average processor usage for first 200 sec of simulation is about 58%. Is this good?	

•  Can I know how many simultaneous simulations to run and how many cores to use?	

•  A resource usage simulator (RUS) was created to simulate resource utilization of

SWIM workloads – gives guidance for choosing processor count/component,
number of simulations, etc

Execution time for IPS tasks	

Processor utilization for 9-
simulation parameter scan	

11/20/13	
DBB	
 41	

Tales from the parareal – simple algorithm that allows parallelization in time
sometimes (J. Lyons, Y. Mayday, G. Turinici, CR Acad. Sci. I – Math 332, (2001), 661-668)	

Consider time evolution problem:	

Define:	

Assume have two time advance operators: 	

 fine – accurate but takes a long time to run	

 coarse – inaccurate but runs very quickly	

The method is based on the iteration scheme:	

	

	

	

Example:	

du
dt

= F(u), u(0) = u0
Tn = nΔT , un = u(Tn)

un+1 = Fn,ΔT (un)Fn,ΔT
Gn,ΔT un+1 ~ Gn,ΔT (un)

u0n+1 = Gn,ΔT (u
0
n)

uk+1n+1 = Gn,ΔT (un
k+1) + Fn,ΔT (un

k) −Gn,ΔT (un
k)

du
dt

− λu = sin(5πt) ≡ Fn,ΔT
du
dt

− λu = 0 ≡ Gn,ΔT

11/20/13	
DBB	
 42	

Can parareal be used to accelerate real physics calculations (e.g evolution of fully
developed turbulence)? → BETA a pseudo-spectral solver for model DTEM physics	

•  Fine solver based on Hasagawa-Mima:	

	

•  For the coarse solver use same equation as fine solver, but:	

–  Reduce spatial resolution: ~half	

–  Faster, less precise time integrator: 4th order RK instead of VODPK	

–  Change dissipation scale	

•  For projection from fine to coarse solution → truncation	

•  For lifting from coarse to fine solution → match spectral slope, use random phase; other
wise, keep high order coefficients from previous iteration	

•  For convergence → total mode energy was shown to be a good proxy for convergence of
low k modes. Thus only one convergence measure was needed. 	

•  Initially implemented entirely in MPI (very complicated) – Samaddar, Newman, Sanchez,
J. Comp Phys 229 (2010) 6558-6573	

∂
∂t

1− ρs
2∇

⊥
2()φ + D

∂2φ

∂y2 +
VD

2
∂φ
∂y

−
4Ln

ε
1

2
∇

⊥

∂φ
∂y

(

)*
+

,-
× ẑ

/

0
1

2

3
4i∇⊥

φ = Sources − Sinks

11/20/13	
DBB	
 43	

The parareal algorithm was re-implemented in the IPS without
modification to the IPS → much more straightforward implementation	

•  IPS implementation:	

–  Three IPS components (no plasma state) – fine solver, coarse solver, convergence test	

–  Task pool manager – efficiently handles parallel executions of fine solver	

–  Traditional loop control – iteration loop, not time loop	

–  Two levels of parallelism – MPI coarse and fine solver codes, multiple instances of fine

solver component	

•  Dividing the simulation time interval into 160 slices, convergence was obtained in

14 iterations for a reduction of simulation time of about ×6	

Suffers from inefficiency during long
run of coarse solver	

11/20/13	
DBB	
 44	

Innovative modification of the parareal workflow using IPS results
in added factor of 2 improvement of efficiency and run time 	

•  Obvious observation (but for years nobody observed it) – You don’t have

to wait for all coarse solves to complete before starting the iteration and
the next round of fine solves. → You can interleave them	

•  Three levels of parallelism – MPI coarse and fine solver codes, multiple
instances of coarse and fine solver components, concurrent execution of
coarse solver, fine solver and convergence components	

•  Completely event driven → No traditional loop	

	

	

Is this the route to turbulence
modeling on the transport time
scale or extended MHD studies
at ITER relevant Lundquist
numbers? Might be.	

Presently being used with
gyrokinetics code GENE	

