

ASDEX Upgrade hybrid regime: requests in terms of modelling

Jörg Hobirk, J. Schweinzer, J. Stober ISM meeting, Lisbon 2010

1

Outline

- Improved H-mode in ASDEX Upgrade (hybrid)
- Challenges for modelling:
 - Non classical current profile
 - Confinement improvement mostly in pedestal
 - NBCD does not work as expected
 - Impurity transport/influence on transport
- Three pulses can be provided for code validation
- Nowadays most difficulties in understanding are related to impurities → for the time being no further modelling needs

An example of a ASDEX Upgrade improved H-mode

- •Target q_0 after current ramp between 1 and 1.5
- •Low power NBI phase for slow relaxation of *q*-profile without significant MHD
- •High power NBI phase to reach target beta
- *q*₀ stationary above 1, backed up by non 1/1 MHD activity in plasma
 Confinement significantly enhanced without ITB
 Current diffusion not explained in classical picture

Y.S. Na et al, Nucl. Fusion 46 (2006) 232-243

ISM meeting, Lisbon September 2010

Differences in current diffusion to clasical picture not explained by MHD

Only 1/1 activity visible
For a short time
Main discrepancy is produced later

Y.S. Na et al, Nucl. Fusion 46 (2006) 232-243

Confinement improvement dominated by pedestal

- Low power phase similar to Hmode
- High power phase has improved pedestal pressure
- Global confinement scales linearly with pedestal pressure
- Analysis in paper resticted to electrons because of missing diagnostic

Y.S. Na et al, Nucl. Fusion 46 (2006) 232–243

5

Differences in H₉₈ dominated by pedestal pressure

- Confinement increases with pedestal pressure
- W_{ped}/W_{core}≈const.

C. Maggi et al. Nucl. Fusion, Vol. 47, 2007

Differences in current diffusion to clasical picture not explained by MHD

Frequency (kHz) •Only 1/1 activity visible •For a short time Main discrepancy is produced later •Especially increase in q0 at t=4s not 15 seen in Experiment • \rightarrow NBCD anormality Safety Factor Case 1: high triangularity 5MW - Case 2: low triangularity 5MW n

Y.S. Na et al, Nucl. Fusion 46 (2006) 232-243

Our beams very tangential, trapping effect most pronounced for injection below magnetic axis, nearly no effect for symmetric injection

Blue: low triangularity Red : high triangularity

S. Günter et al, Nucl. Fusion 47 (2007) 920-928

Off-axis current drive experiments on ASDEX Upgrade high triangularity

Driven current follows the expectations from code calculations S. Günter *et al*, Nucl. Fusion 47 (2007) 920–928

•Off-axis NBI drives more current because of a more tangential injection

- •Visible change in loop voltage and OH consumption
- •Within measurement accuracy consistent with code calculations

S. Günter et al, Nucl. Fusion 47 (2007) 920-928

Differences in H₉₈ dominated by pedestal pressure

- Confinement increases with pedestal pressure
- W_{ped}/W_{core}≈const.
 → But late heating might be different

14

C. Maggi et al. Nucl. Fusion, Vol. 47, 2007

Ramp-up scenario can influence confinement significantly !

#	Te0	$\langle ne \rangle$	PNBI	q0	q95	H98 $_{y,2}$	MHD behaviour during
	(1.0 s)	(1.0 s)	(preheat)				high power phase
	[keV]	1E19m ³	[MW]				
20998	3.0	2.5	2.5	2.0	4.0	-	Disrupts after ITB
20993	3.4	2.2	2.5	3.2	4.8	1.2	4/3 NTM, 3/2 NTM at 3.2s
20991	2.6	3.6	2.5	2.8	4.8	1.2	4/3 NTM, 3/2 NTM at 2.3s
20990	2.2	5.5	2.5	2.2	4.8	1.2	4/3 NTM, 3/2 NTM at 1.8s
20992	1.5	5.3	1.25	?	4.8	1.2	4/3 NTM throughout
20994	1.6	2.9	0	1.0	4.8	-	Fishbones, wall contact
20995	1.6	2.9	0	0.95	4.8	1.5	Fishbonesthroughout
20996	1.1	2.9	0	0.8	4.0	1.5	Fishbones
20997	1.1	2.9	0	0.8	4.0	1.5	4/3 NTM \rightarrow Fishbones
20999	1.0	5.2	1.25	?	4.0	1.2	4/3 NTM throughout

MHD significantly different

early heating

late heating

q-profiles: difference significant for $0.3 < \rho_t < 0.6$

Major Radius at height of magnetic axis (m)

Do changes in q-profile and MHD explain changes in n,T profiles?

 T_e shows expected effect of (3,2)-NTM-island T_i profile varies over wide radial range, as does L_{Ti}

Variation of L_{Ti} consistent with variation $\prod_{ASDEX Upgrade}$

Based on GS2-calculations only varying s/q n, T, v_{tor} from late heating discharge

- 3 pulses (#17870,#20993,#20995) can be supplied to ISM
- Challenges
 - in terms of current distribuion,
 - confinement enhancement and
 - non classical NBCD
- are waiting
- For the time being AUG has no further modelling needs

ASDEX Upgrade

Strong change in I_i and q=1 for 1 source

Whole profile changes

Effect clearly visible on MSE anglesAlso reflected in q-profile change

0.8

Significant change in q expected

- q development different with sawteeth
 Model does not full reconnection after given time
 q too low without sawteeth
- •Change in q_{min} still significant with off-axis NB

#14513 with sawteeth

- •Difference with off-axis beams still visible
- Offset different
- Raus-scan smeared out

•Sawteeth should be visible in MSE

 Not seen so far in any discharge

Jörg Hobirk

ASDEX Upgrade

 q_{95} = 3.1, early divertor formation

```
early heating \rightarrow fishbones
```

Reason:

Central q < 1.3 after ramp-up ?

Plausible, but no MSE for this discharge, to be repeated 2008/09

Note: high beta compatible with fishbones

20449, q₉₅=3.17

MHD variation during single

Jörg Hobirk

Variation of the q-profile at end of ramp-up

Jörg Hobirk

35 ISM meeting, Lisbon September 2010

NTMs set in when central q flat and close to 1.5

Late heating q-profiles do hardly evolve during main heating \rightarrow always significant shear at q=1.3...1.5

0.4

0.6

rho tor

0.2

0.0

0.8

1.0

ASDEX UDWINGTER RANDER UP TO THE ASDEX UDWINGTER PEAKED Te-

