

Impact of W on current ramp-up phase in JET & ITER

G.M.D. Hogeweij¹, G. Calabrò², A.C.C. Sips³, I. Voitsekhovitch⁴, JET-EFDA contributors & ITM-TF ITER Scenario Modelling group

 ¹ FOM Institute DIFFER, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein, The Netherlands, www.differ.nl
 ² Associazione Euratom-ENEA, Frascati, Italy
 ³ EFDA CSU Culham, Culham Science Centre, Abingdon OX14 3DB, UK
 ⁴ EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, UK

ISM Working Session, CEA, Cadarache, France, 3 June 2013

Motivation: with ILW in JET Motivation: with ILW in JET MOTIVATION AND A CONTRACT AND A CONTRACT

Example pulse 82005: P_{rad} (suddenly) increases (10.5s) (P_{rad} remains below P_{tot}) Observations:

- T_e profile hollow;
 Sawteeth disappear
- Strong density peaking
- Although n_e and T_e stabilize,
 I_i and q keep changing
- n=1,n=2 MHD activity
 → mode locking → disruption

Question: what W concentration can the plasma "survive" (i.e. without strongly perturbing Te, q, li, etc.) in JET-ILW as template for ITER

Here we concentrate on the current ramp-up phase (which is most vulnerable)

13 mei 2008

Outline:

- What radiation can we expect
- Identify 2 pairs of similar ramp-ups, one with C-wall and one with ILW one pair ohmic, one pair with few MW of ICRH
- ≻ Effect of replacing C⁶⁺ → Be⁴⁺ → Be⁴⁺ + small conc. of W for ohmic ramp-up:
 - \checkmark interpretative: effect on q profile evolution and radiation (using exp. n_e , $T_{e,i}$, Z_{eff})
 - ✓ **predictive:** effect on T_e & q profile evolution and radiation (using exp. n_e , T_i , Z_{eff})
- Same exercise for ohmic ITER ohmic ramp-up

What next:

- Analyze q profile evolution and radiation in ILW ramp-up case with strong W radiation (e.g. 82074)
- Repeat modelling for JET discharge with ICRF heated ramp-up
- H-mode transition during ramp-up

What radiation to expect: Radiation Model for W

a. Radiation data from D.Post. et al, At. Data Nucl. Data Tables 20 (1977) 397 Uses "Average Ion Model" (corona equilibrium) This is used in CRONOS

b. More sophisticated, using more detailed atomic physics:

Th.Pütterich et al, Nuc.Fusion 50 (2010) 025012

"Calculation and experimental test of the cooling factor of tungsten"

New data

- radiation peak shifted to slightly higher temperature (from 1 keV to ~1.5 keV)
- radiation peak bit lower and wider

(note logarithmic scale on both x and y axis!)

ELEVENT TASK Force

What radiation to expect from C, Be and W?

EFDA Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

JET

Radiation as function of T_e Note W conc. 10³ times lower than C, Be For W both AIM and Pütterich W radiation peak at 1 / 1.5 keV (AIM / Pütt)

Dick Hogeweij - ISM Working Session 3 June 2013

Example from ohmic ITER ramp-up at modest $n_e = 0.25 * n_{GW}$ and $n_W / n_e = 10^{-5}$ full / dashed lines : (a) 10 / 70 s

Identity pairs

JET Data Display 72723 EFIT/XIP Seq=98 (0) Ohmic identity pair: 83223 EFIT/XIP Seg=22 (0) ショッシュ ✓ same dl_p/dt: 0.28MA/s 72723 LIDR/NE Seq=92 (2) X=3.00000 √similar n_e 83223 LIDR/NE Seq=70 (3) 2 X=3.00000 C: 72723 (2.4T/2.6MA), 72723 LIDR/TE Seq=92 (2) 1.5 X=3.00000 83223 LIDR/TE ILW: 83223 (2.4T/2.5MA) 1.0 Seq=70 (3) X=3.00000 5432 72723 KS3/ZEFV Seg=111 (3) 83223 KS3/ZEFV Seg=76 (2) 432 72723 KS3/ZEFH Seq=111 (3) 83223 KS3/ZEFH Seq=76 (2) 48 42 44 46 Printed by: voits S Thu Nov 22 2012 11:31

Identity pair with ICRH heating:

C: 72507

ILW: 83449 (lower ICRH power, different wave form)

Dick Hogeweij - ISM Working Session 3 June 2013

13 mei 2008

JET Interpretative 72723 Interpretative 72723 Replacing $C^{6+} \rightarrow Be^{4+}$ and adding traces of W

Blue: only impurity is C⁶⁺, Z_{eff} as measured Green: C⁶⁺ replaced by same concentration Be⁴⁺ (hence with lower Z_{eff}) Red: same Be⁴⁺, added W, $n_W/n_e = 10^{-5}$ Cyan: same Be⁴⁺, added W, $n_W/n_e = 5 \ 10^{-5}$ Magenta: same Be⁴⁺, added W, $n_W/n_e = 10^{-4}$ Black dashed line in 2nd frame: n_C/n_e (= nB_{Be}/n_e)

Notes:

- Simple AIM model for W used
- ➢ Flat Z_{eff} assumed

> These are interpretative runs, i.e. T_e taken from data – unrealistic when strong radiation present

> Addition of 10⁻⁴ W brings Z_{eff} more or less back to original level (2nd panel)

> With 10⁻⁴ W the radiation loss nearly equals ohmic input power at end of ramp-up(4^{th} panel)

Tiny effect on q profile evolution (5th panel) Dick Hogeweij - ISM Working Session 3 June 2013

Notes:

> Initial off-axis peak in j and thus in p_{ohm} (due to off-axis peaked Te)

- Effect of addition of 10⁻⁴ W on power balance becomes strong towards end of RU
- Effect on q profile evolution only in very early phase

Predictive modelling JET ramp-up

Notes:

- Start from experimental profiles at 41.5 s (i.e. 1.5 s after break-down)
- \succ Use experimental $\rm n_e$ and $\rm Z_{eff}$
- \succ Assume flat Z_{eff}
- > Calculate self-consistently evolution of T_e , T_i and q

In the past 2 models were successful in predicting the evolution durint ramp-up:

- Empirical scaling model, using either L- or H-mode scaling law,
 - with correction factor 0.6 / 0.4 for L / H scaling
 - However, does not work well when $P_{rad} \sim P_{inp}$ so will not be used heree
- Semi-empirical Bohm-gyroBohm model [original, L-mode form]
 - will be used in the following

Note: first-principle model like GLF23 does not work well in L-mode ramp-up phase

Task Force

JETPredict.72723 - Bohm-gyroBohmReplacing $C^{6+} \rightarrow Be^{4+}$ and adding traces of W

Blue: only impurity is C⁶⁺, Z_{eff} as measured Green: C⁶⁺ replaced by same concentration Be⁴⁺ (hence with lower Z_{eff}) Red: same Be⁴⁺, added W, $n_W/n_e = 5 \ 10^{-5}$ Cyan: same Be⁴⁺, added W, $n_W/n_e = 10^{-4}$ Magenta: same Be⁴⁺, added W, $n_W/n_e = 2 \ 10^{-4}$ Pale green : same Be⁴⁺, added W, $n_W/n_e = 4 \ 10^{-4}$

Black: same Be⁴⁺ , added W, $n_W/n_e = 7 \ 10^{-4}$

Full lines: AIM (not for highest concentration) Dashed lines: Pütterich (not for all cases) Notes:

- > Addition of W with n_W / n_e up to 10⁻⁴ does not have strong effect on evolution of T_e and q
- > With $n_W / n_e = 2 \ 10^{-4}$ the evolution of T_e and q starts to be totally different, but recovers
- $> n_W / n_e >= 4 \ 10^{-4} T_e \& q$ evolution totally different

Improved radiation model Dick Hogeweij - ISM Working Session 3 June 2013 margin for W bit higher 13 mei 2008

Same colour coding as previous plot (Pütterich calculation only for highest W cases); exp T_e = dotted black curve in upper panel

 Initial off-axis peak in j and thus in p_{ohm} (due to off-axis peaked T_e)
 n_W / n_e <= 5 10⁻⁵ → no strong effect on evolution of T_e and q
 n_W/n_e = 1-2 10⁻⁴ → T_e & q evolution modified in RU (46s), but restores in flat-top (50s)
 n_W/n_e >= 4 10⁻⁴ → plasma cannot cross radiation barrier, profiles totally spoiled Dick Hogeweij - ISM Working Session 3 June 2013

ITER – Bohm-gyroBohm

Now to ITER

Ohmic simulations;

Flat Z_{eff} assumed, as given by ITER team

(i.e. Z_{eff} decreasing with increasing density);

Bohm-gyro model used, original L-mode version

Blue: only impurity is Be4+, Green: same Be4+, added W, nW/ne = 2 10⁻⁵ Red: same Be4+, added W, nW/ne = 5 10⁻⁵ Cyan: same Be4+, added W, nW/ne = 10⁻⁴ Black: same, *with added off-axis ECRH* ramped to 20 MW between 30 and 50 s Magenta: same Be4+, added W, nW/ne = 2 10⁻⁴ Black dashed line in 2nd frame: line averaged n_e

Notes:

> Very significant radiation when n_W / n_e >= 5 10⁻⁵

> With $n_w / n_e >= 10^{-4}$ the radiation losses lead to

a "numerical disruption" (after 85 / 45 s)

Dick Hogeweij - ISM Working Session 3 June 2013

ITER – Bohm-gyroBohm

EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

Same colour coding as previous plots

Notes:

> $n_W/n_e = 2 \ 10^{-4} \text{ W}$: profiles already deviate @20 s; @44 s large $T_e \sim 0$ region for $\rho > 0.6$ > $n_W/n_e = 1 \ 10^{-4}$: same happens at end of ramp-up;

in this case 20 MW of ECRH restores normal evolution

Dick Hogeweij - ISM Working Session 3 June 2013

13 mei 2008

ITER – Bohm-gyroBohm

Closer look – same colour coding as before

Many problems arise due to very peaked $\rm T_e$ profile due to strong radiation loss in ouer part:

- very low central q (2nd panel)
- I_i becomes far too high (3rd panel)
- Iot of extra flux consumption (4th panel)
- shrinking of effective plasma volume (5th panel)
 - \rightarrow q=2 at effective plasma edge (6th panel)

With timely application or ECRH all these problems can be avoided (at least up to the W concentrations considered here) (black curves)

Task Force

INTEGRATED TOKAMAK MODELLING

Conclusions & Outlook

Conclusions for JET:

- For an ohmic ramp-up at moderate density, assuming flat Z_{eff} and uniform n_W / n_e the critical W concentration is n_W / n_e is ~ 2 10⁻⁴
- Above this W concentration, the plasma cannot cross the radiation barrier, thus staying at a flat/hollow T_e profile below 1 keV

Conclusions for ITER:

- > For an ohmic ramp-up at moderate density, assuming flat Z_{eff} and uniform n_W / n_e the critical W concentration is n_W / n_e is ~10⁻⁴
- Above this W concentration, the T_e profile develops a 0 region outside ρ ~0.7, thus inducing strong peaking of current density, and strong problems regarding I_i, flux consumption and MHD

Conclusions & Outlook

Further work for JET:

- Analyze q profile evolution and radiation in ILW ramp-up case with strong W radiation (e.g. 82074)
- Same exercise for pulse with ICRF in RU: what W concentration is acceptable?
- Look at pulses with ILW: what was measured radiation level, what can one conclude about W concentration and profile (is n_w more peaked than n_e?)

Further work for ITER:

> What W concentration is acceptable when applying ECRH from early in RU

Task Force

INTEGRATED TOKAMAK MODELLING