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Outline:

« Modelling of H-L transition in ITER — why it is important?

*Models for L-H and H-L transition, type-lll ELMs and pass to and
from high performance;

* Role of impurities;

e SUMmMary.
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EF Coupled JINTRAC/CREATE-NL simulation of H-L transit  ion in
= £ ITER Scenario-2— can ITER PF system cope with it?

|, (top) and [3, (bottom) time evolution following
"expected” fast (blue/green), slow (black) and
“unexpected” fast H-L transition (red)
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Inner gap time evolution following "expected” fast ( blue/green), slow (black)
and “unexpected” fast (red) H-L transition with reference gap evolution
plotted as black dotted curve
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i EE}%&: Transport models for L-H and H-L transition

Two models for L-H and H-L transitions were used in simulations- “global”

V. Parail I0S ITPA Meeting, Kyoto, October 2011 : * EFDA

and "local’ models;

In “global approach” the code compares total heat flux through the
selected magnetic surface (either top-of-barrier or deeper inside, for
code stability) with most recent parametric fits for L-H transition power
threshold from Martin et al. J. Phys 2008 (including an atomic mass
dependency):

PL—H = 0.0488 mg,;c? [Bto.803 [50'941 [QI\/I /2)—1

In “local approach” the code compares electron temperature at the
selected magnetic surface (normally on top-of-barrier or anticipated
top-of-barrier) with the “local” parametric fits for the electron
temperature at L-H transition (from E. Righi et al, Plasma Phys.
Control. Fusion 42 (2000) A199-A204).

— -0.64 p1.69 -0.14 -0.86
T rit,kevV 0-39ne,20 B M q95

C




;éﬁ- r Transport models for L-H and H-L transition

After either comparing the heat flux Q with the power threshold P in
“global” approach or T, ,,, with the critical temperature in “local” approach
transport within edge barrier is modified in 3 possible ways:

< T

ecrit?

v Plasma stays in L-mode if Q< P, or TemIO

v Plasma enters H-mode with type-lll ELMs if P ,<Q< J/P ,,, 1.5>)51
or Te crit< e,top< ZTe,crit , {<24,

v’ Transport within edge barrier is reduced to neo-classical level
between ELMs.

v Type-lll ELMs are similar to type-I ELMs (with Gaussian increase in
edge transport coefficients) but with lower value of critical pressure

gradient ., <1,

v Plasma enters H-mode with type-1 ELMs if Q> y/P , or T, >
Zl'e it With type-I ELMs having higher value of critical pressure gradient

~1.8

crI
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A typical JET H-mode plasma with composite ELMs and fast H-L transition,
which is used as a template in our simulations (note a significant increase in
line radiation after ea%rg ELM).

core
P o A e T NS

10° M-2

10’
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“Non-local” model (1)

“Non-local” model for L-H and H-L

transition: «JET #72207: preliminary data
R0$ (0.8) 1 = Lmode eContinuous ELM model
*Discrete ELM model
I:)Martin08
[
6 -
P (0.8 2 >
1< 'OSS( ) <A,. = type-lllH-mode zs ;‘_:
I:)Martin08 = i:
Mol O : ! | ! | ! | ! | ! | ! | |
e
P (0.8 T
A, _ < 'OSS( ) = type-l H-mode =, i_— & N ES_Q
I:)MartinOS /C\‘” 2
Y 0 - T T T T T T T T T T T T 1
< 151 =
_ 0.717 p 0.803 =~0.941 i
Parings = 0-0488n, ,,° "7 B8R S0% £ wo-
2 5-
Martin PPCF (2008) % ]

51,5 52,0 52,5 53,0 53,5 54,0 54,5 55,0
Time [s]

P.«(0.8) loss power at p=0.8
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“Non-local” model (2)

 Non-local model scan can
be tuned to give the
temporal evolution in W,
gualitatively in line with
experiment;

* Density trend is not so well
reproduced

» Discrete ELM model
undergoes a series of
repetitive I-L-11I-1-L-11I-1
transitions caused by
energy lost at crash, which
are not usually observed in
experiment
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2 4

W, [MJ]

oJET #72207: preliminary data

*Discrete ELM model

=
oo
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=
o
|

[MW]  <n > [10" m?]
N M OO O O
1 1 1 g

! |
52,0 52,5 53,0 53,5 54,0 54,5 55,0
Time [s]




“Non-local’ model (3)

It is important to stress that description of H-L transition, which includes
transition to type-lll ELMs, matches experimental observation much better

than instant transition to L-mode. Instant H-L transition

4.0

3.0

10°

2.0

.~
—a3

1.0

Ii]llllllIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIII

15

1.0

10" W

0.5

T T Tt — e
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E F.}E{% “Local” model (1)

“Local” model for L-H and H-L
transition:

Local model
M<1 = L-mode
Tcrit . 6__
T.(0.9 2 2]
1<M <B,_ = type-lll H-mode Z
Tcrit 515:I""ILI’""I'LI"'I""I'
S 104
Te(09) D_% 5 _ /
B,., <——— = type-l H-mode 0-
Tcrit /Lf?15—lllllllllll"'I""I
% 1,0 /(—\
_ ~06451.69p 1 -0.14 . -0.86 3%'0’5'.
Tcrit,keV _O-Sgne,zo B M q95 ° 0,0 +—F—F———— T T -
52,0 52,5 53,0 53,5 54,0

JET #72207: preliminary data

Righi PPCF (2000)
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EFm Comparison between “Global” and “Local”

=t model
 Local model avoids non- JET #72207: preliminary data
physical dithering transitions Local model
of the non-local model
« Reasonably good description : Non-local model
of the L-H transition - ©7
* Fails to describe the fast fall = *7
in energy and density during = 2-
H-L transition o
« Possible ways to improve - ¥ L]
model include: = 107
e Fine tuning of heat and n® o] /
particle transport within e — . :
barrier; §1,5_' V m
e Include radiation; S Jo- ‘,"’ "
* No validated multi-machine efgo,s—_ ‘
local model exists! o B o S 1 | M, S
52,0 52,5 53,0 53,5 54,0
Time [s]
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10%° M-2 10°

10’

>
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Adding some impurity
radiation after big ELM
crash helps to bring
plasma to a long type-
lll period even with
local H-L transition
model,

We could conclude that
local model for L-H-L
transition has a
potential to describe
plasma dynamics close
to one observed in
experiment;

Only systematic
modelling of
experimental data can
Improve predictive
modelling of L-H-L
transitions;

10° (SI)

10° M2

10° eV

10" W

-0.5

0.0F=-=--===-=-=-=--e

I|IIII
-

52.5 53.0 53.5 54.0
SecCs
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* X
* *
* *
* * 7
* 4 * ) €

Recent example of self-
consistent predictive
modelling of impurity
redistribution on top of
main ion density and ion
and electron
temperature simulation;

N

10°

Note significant
temporary rise in i
radiation following each
type-I ELM (as observed
In experiments)
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Role of radiation (3)

Wth

4.0
45
4.0
44

Pnbi, Prad

1.0

8.0

1.0
2.0

4.0
2a
2.0

Type-lll ELMS Type-l ELMS



v Global model describes better H-L transition but fails to reproduce L-

H transition due to persistence of strong dithering;

v On the other hand, local model reproduces the dynamics of L-H
transition reasonably well but fails to reproduce fast H-L transition;

v Impurity radiation might play an important role inthe dynamict of H-L
transition;

v'Systematic comparison with experimental results are needed before

applying either model to ITER.
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