SOUL: A 1D SOL Module for CRONOS

Rajiv Goswami¹, Jean-François Artaud², Frédéric Imbeaux², Jerôme Bucalossi² & Christophe Guillemaut²

¹Institute for Plasma Research, India.

²IRFM, CEA, France.

July 25, 2011

Outline

Introduction

Previous Work & Motivation

How?

Why SOUL?

Model(s)

Physical

Coupling mechanism

Numerical

Results

Subsonic solution:

Supersonic solution:

CRONOS+SOUL convergence:

Summary

Conclusion & Future Work

- Modelling of full tokamak (magnetic axis to walls).
- ▶ Integrate two distinct regions (Core & SOL).
- ► Core:
- Closed field lines.
- » 1D (Flux surface averaged) transport equations on 2D shaped magnetic equilibria => (1.5D).
- » Long radial transport time scale (0.1 1 s).
- ► SOL:
- » Open field lines.
- » 2D (Braginskii-like) fluid equations.
- » Shorter time scale (few ms).
- ► Coupling schemes/Boundary conditions for Core + SOL ?

Two major approach

- ▶ Extend the 2D grid used for SOL upto the magnetic axis [1].
- ► Couple the Core to the SOL at the separatrix [2]-[4].

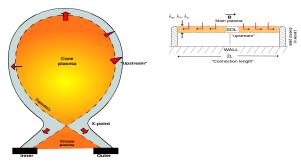
Issues

- ▶ Highly complex 2D SOL codes with many parameters.
- ► Full 2D SOL simulations are very time consuming even with current computer capabilities!
- Convergence issues (extremely slow or failure) for some parameter regimes?
- ► Applicability of present 2D SOL codes without a proper SOL turbulence model, in a predictive mode is unclear.

└ How?

What to do?

Take a "middle path" between the highly simplistic two-point models and the complex and slow, 2D SOL codes!



Since the SOL has:

- a small radial extent.
- strong influence by the fast parallel transport.

The direction aligned along the plasma flow is crucial to particle & energy exhaust, through the generation of (large) flows, density & temperature gradients, etc.

Thus!

SOUL solves for this parallel dynamics, Braginskii-like plasma fluid equations. Assuming steady-state,

- Radial dynamics is incorporated through 0D arguments such as SOL widths, etc.
- ▶ The SOL is assumed to be "straightened-out".
- ▶ Information about parallel connection length & X-point position is provided by CRONOS.
- ► The parallel transport is assumed to be classical, without flux limits to simulate kinetic effects.

Particle balance:

$$\frac{d}{dx}(nv) = \mathbf{S}_{\perp}\theta(x_d - x) + nn_n \langle \sigma v \rangle_i - n^2 \langle \sigma v \rangle_r$$
 (1)

Momentum balance (neglecting viscosity):

$$\frac{d}{dx} \left[mnv^2 + n(T_e + T_i) \right] = -mnv \left(n_n \langle \sigma v \rangle_{cx} + n \langle \sigma v \rangle_r \right)$$
 (2)

Electron energy balance:

$$\begin{split} &\frac{d}{dx}\left(\frac{5}{2}nvT_{e}-\kappa_{\parallel e}\frac{dT_{e}}{dx}\right) = \textbf{Q}_{\perp e}\theta(x_{d}-x)-n^{2}\xi_{I}L_{z}(T_{e})\\ &-E_{i}nn_{n}\langle\sigma v\rangle_{i}-\frac{3}{2}T_{e}n^{2}\langle\sigma v\rangle_{r}-n\nu_{ei}(T_{e}-T_{i})+v\frac{d}{dx}\left(nT_{e}\right) \end{split} \tag{3}$$

Ion energy balance:

$$\begin{split} \frac{d}{dx}\left(\frac{5}{2}nvT_{i} + \frac{mnv^{3}}{2} - \kappa_{\parallel i}\frac{dT_{i}}{dx}\right) &= \mathbf{Q}_{\perp i}\theta(x_{d} - x) \\ - \left[\frac{3}{2}\left(T_{i} - T_{n}\right) + \frac{mv^{2}}{2}\right]n^{2}\langle\sigma v\rangle_{\mathrm{cx}} - \left(\frac{3}{2}T_{i} + \frac{mv^{2}}{2}\right)n^{2}\langle\sigma v\rangle_{\mathrm{r}} \\ &+ n\nu_{ei}(T_{e} - T_{i}) - v\frac{d}{dx}\left(nT_{e}\right) \end{split} \tag{4}$$

Neutral (diffusion) equation:

$$\frac{d}{dz}\left(-D_{n}\frac{dn_{n}}{dz}\right) = -nn_{n}\langle\sigma v\rangle_{i} + n^{2}\langle\sigma v\rangle_{r} \tag{5}$$

$$D_{n} = \frac{T_{i}}{mn(\langle \sigma v \rangle_{i} + \langle \sigma v \rangle_{cx})}$$

└ Physical

Stagnation point bc's:

$$\mathbf{M}$$
 , \mathbf{n}' , $\mathbf{T}'_{\mathbf{e}}$, $\mathbf{T}'_{\mathbf{i}}$, $\mathbf{n}'_{\mathbf{n}}=0$

Sheath bc's @ target:

$$\mathbf{M_t} \geq 1 \; ; \; \mathbf{q_e^{tot}} = \delta_e \mathbf{nvT_e} \; ; \; \mathbf{q_i^{tot}} = \delta_i \mathbf{nvT_i} \; ; \; -\mathbf{D_n} \frac{\mathbf{dn_n}}{\mathbf{dz}} = \mathbf{R} * \mathbf{nvsin} \alpha$$

At a given step in the time evolution of CRONOS, do:

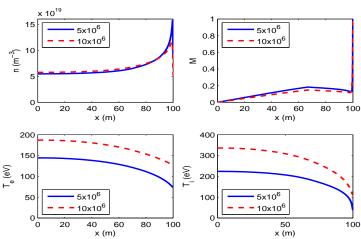
- 1. Use $(S_{\perp}^{\rm init}$ and $Q_{\perp e(i)}^{\rm init})$ as input in SOUL to get n and $T_{e(i)}$ values.
- 2. Plug the stagnation point values $n^{\rm st}$ and $T_{e(i)}^{\rm st}$ into CRONOS as separatrix boundary values.
- 3. Now use the \mathbf{S}_{\perp} and $\mathbf{Q}_{\perp \mathbf{e}(\mathbf{i})}$ output from CRONOS as input in SOUL to obtain new \mathbf{n} & $\mathbf{T}_{\mathbf{e}(\mathbf{i})}$.
- **4.** Rerun CRONOS with the new separatrix boundary values and get updated values for \mathbf{S}_{\perp} and $\mathbf{Q}_{\perp \mathbf{e}(\mathbf{i})}$.
- 5. Run loop (2-4) till convergence!

Advance CRONOS in time.

- ▶ Hybrid scheme for advection terms (upwinding when required).
- 2nd-order finite-difference for diffusion terms.
- Obtain a set of discrete nonlinear coupled equations on a nonuniform (exponential) grid.
- Use a globally-convergent Newton solver for these nonlinear systems of equations.

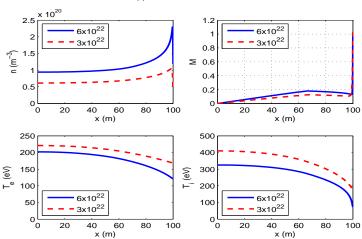
Variable $Q_{\perp e(i)}$ (W/m³)

$$\textbf{S}_{\perp} = \textbf{3} \times \textbf{10}^{\textbf{22}} \ / \text{m}^3 / \text{s}$$

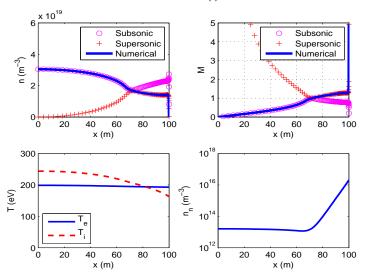


Variable S_{\perp} (/m³/s)

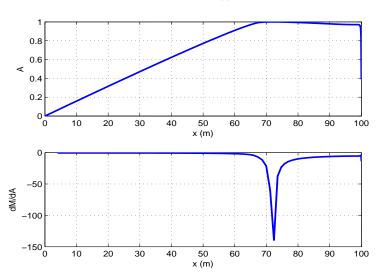
$$\textbf{Q}_{\perp \text{e(i)}} = \textbf{15} \times \textbf{10}^{6} \text{ W/m}^{3}$$



$$\textbf{S}_{\perp}=\textbf{5}\times\textbf{10}^{\textbf{22}}~/\text{m}^3/\text{s}$$
 , $\textbf{Q}_{\perp\textbf{e(i)}}=\textbf{6}\times\textbf{10}^{\textbf{6}}~\text{W/m}^3.$

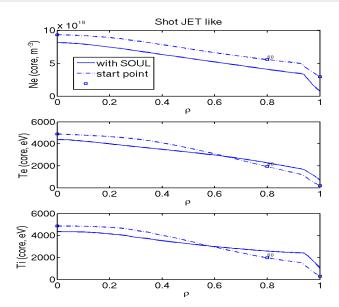


$$\textbf{S}_{\perp}=\textbf{5}\times\textbf{10}^{\textbf{22}}~/\text{m}^3/\text{s}$$
 , $\textbf{Q}_{\perp\text{e(i)}}=\textbf{6}\times\textbf{10}^{\textbf{6}}~\text{W/m}^3.$



Results

CRONOS+SOUL convergence:



- ► SOUL is a 1D fluid code for modelling plasma transport in the SOL along magnetic field lines.
- ▶ It solves a set of Braginskii-like equations for electron and ions, assuming ambipolarity & no net current.
- ► Cross-field transport constitutes a source of mass and energy.
- ▶ Plasma-neutral collisions are considered through a separate fluid model for neutrals.
- Realistic bc's are employed.
- ▶ Use of nonuniform grids and direct matrix solver MUMPS enable very rapid simulation ($\sim 1 \text{ s}$).
- ▶ We also obtain a natural transition to "supersonic flows", which is in agreement with recent theoretical arguments [5].

- ► SOUL has now been integrated with CRONOS for providing reasonable separatrix bc's, and convergence of the coupling mechanism has been established.
- ▶ Benchmarking with well-diagnosed JET shots is ongoing.
- Communication to a journal.
- Inclusion of additional physics.

- D. Coster et al., J. Nucl. Mater. 241-243, 690 (1997).
- M. Fichtmüller et al., Czech. J. Phys. 48/S2, 25 (1998).
- A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996).
- R. Stankiewicz et al., J. Nucl. Mater. 313-316, 899 (2003).
- Ph. Ghendrih et al., Plasma Phys. Control. Fusion **53**, 054019 (2011).