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I ntroduction

Hybrid scenarios in present machines are characterizeohpsoved confinement compared
to the IPB98(y,2) empirical scaling law expectations. A t@mof possibilities explaining
this improvement have been proposed: reduction in deteterMHD, pedestal confinement
improvement [1], rotational shear turbulence suppressianeased turbulent thresholds due
to g-profile shaping, and stiffness reduction at low magngtiear [2]. This work concentrates
on isolating the impact of increased s/q at outer radii (wlers the magnetic shear) on core
confinement in low-triangularity JET and ASDEX Upgrade (AlL&Zperiments. This is carried
out by predictive heat and particle transport modellinghggihe integrated modelling code
CRONOS [3] coupled to the GLF23 turbulent transport modglT4is work aims to validate
recent predictions of the ITER hybrid scenario also emplgy¢RONOS/GLF23, where a high
level of confinement and resultant fusion power sensititihe s/q profile was found [5].

Experimental discharges

For both machines, discharge pairs were analyzed disgjagrmilar pedestal confinement
yet significant differences in core confinement. A variatiorng-profile was experimentally
achieved in each pair, via the 'current-overshoot’ methardtie JET case (79626/79630, with
Br = 2T, Ip = L7MA and Bn(Wh) = 1.9/2.1, Bn(Waia) = 2.6/2.8) [6], and by varying the
auxiliary heating timing in the AUG case (20993/20995, wigh = 2.4T, I, = 1IMA, and
Bn(Wh) = 1.6/1.9, Bn(Waia) = 1.9/2.3) [7]. Temporal evolution of the total plasma current,
heating powers and confinement factdfgd = 1 /I PB98(y, 2)) can be seen in figure 1. The s/q
profiles used throughout this analysis can be seen in figuterzhe JET pair, the interpretative
g-profiles were used since the transient effect of the cueershoot may be within the error
bars of the MSE measurements. For the AUG pair, the meastpeafites were used since the
interpretative g-profiles failed to reproduce the meastetaked g-profiles within experimental
error, and non-neoclassical effects may be at play clamfiagy-profile to 1. The rotation
profiles for the JET case are similar. For the AUG case, th®20@wer confinement) case has
a significantly flatter rotation profile in the low magnetiesah region x<0.4.

*See the Appendix of F. Romanelli et al., Proceedings of Brel 2AEA Fusion Energy Conference 2010, Daejeon, Korea



M odelling tools and techniques
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Figure 1: Evolution of ,[MA], Rt [10°W] andHgg for the JET (left panel)
rent sources are calculated by, 4 ihe AUG (I panel) pairs
NEMO/SPOT [8]. In all simulations, GLF23 is employed withihre region x=0-0.83, where x
is the normalized toroidal flux coordinate. For each disghacomparison simulations were
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Results Figure 2: s/q profiles for all analysed
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experimentally observed difference. A more quantitativalgsis of these differences, and of
all subsequent simulations discussed below, can be foutadbia 1. This pattern is replicated

in the AUG simulations, displayed in figure 4 for a heat *° T expos
- Eég?/fo/ExB qo95 1
CRO wo/ExB q93

transport simulation of shot 20995. In the AUG case the 8

CRO w/ExB q95

degree ofT; overprediction is more severe. However, res © CRO W/ExB q93
gardless of the ExB suppression assumption, the g-profile 4 \\\
substitution leads to § difference consistent with observa- 2 :

tions' O0 0.2 0.4 O).(G 0.8 1
In figure 5, the results o€ombined heat and particle Figure 4: Heat transport only GLF23

transport simulations for JET 79630 are shown. The pattefegictions for ion temperatures in AUG

remains similar to the heat transport only cases, althourgla9s

the primary effect on confinement improvement following thprofile substitution is now in

the particle channel. The reduction of fhgradient increase in comparison to the heat transport

only case, is due to positive correllation in GLF23 betweengity gradients and transport,

interpreted as the destabi- * T oem ! T e T e
. . i N - — -EXP26 6 - — -EXP26 6\ - — -EXP26
lizationof TEMmodes. Sim- P\ ~cromeaws | s\ — croweews | s \:zizazfs::zzz
—_— WIEX W/EX 4 N W/EXI
Ilar results are Shown forS‘ gggwlgxgggg %‘ 4 \ gggnggggg ‘E 4\{8\,\”;:3;2
g s 2 £
. . - °3 =3
AUG 20995 in figure 6. For " | " \ z N
the AUG case, the degree of 2 . . N . \
' \
improved particle transport % o2 o4 0s 08 1 % 02 04 06 08 1 % 02 04 06 08 1
X X X

is consistent with observa-Figure 5: Heat and particle transport GLF23 prediction3; dfeft panel), Te
tion, although when ExB supgicenter panel), antk (right panel) for JET 79630

pression is included thee profiles are significantly overpredicted. In table 1 the datian
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Table 1: Core thermal energy following GLF23 predictions&T and AUG hybrids. Units are [MJ].

Heat transport Heat and particle Heat transport Heat and particle

noExB  with ExB | no ExB  with ExB no ExB  with ExB | no ExB  with ExB
79630 (q79630)| 1.71 2.37 171 2.68 20995 (q20995)| 0.36 0.48 0.34 0.47
79626 (q79626)| 1.9 2.62 1.83 3.03 20995 (q20993)| 0.3 0.43 0.29 0.41
Ratio 111 1.11 1.07 1.13 Ratio 1.2 1.12 1.17 1.15

Finally, additional analysis was carried out for the JETecagh QuaLiKiz, where we assess
the sensitivity of the instability linear thresholds to tprofile, atx = 0.65. The experimental
R/Lti is 5.9+ 0.5 and 634 0.3 for 79630 and 79626 respectively. QuaLiKiz prediRfd i =
7.32 for 79630, andr/Lt; = 8.08 for the same input apart from the substitution of the 79626
g-profile and magnetic shear values.

Discussion and conclusions

A significant proportion of improved confinement in the JETdaxJG hybrid scenarios
analysed here is due to improved g-profile shaping in the Inigignetic shear region, at
x > 0.4, according to GLF23. A proportion of 60%30% of the observed improvement in
core thermal energy content within each JET/AUG pair retypaly, is predicted through g-
profile substitution alone (when averaging the ratios indb#om line of table 1). However,
including rotation in GLF23 leads to core energy contentrprediction for these discharges.
Nevertheless, confinement improvement due to s/q is inakperof the rotation assumption.
The degree of improvement in the ITG/TEM linear thresholdghe JET pair is also well
predicted by QuaLiKiz through the s/q effect alone, althwotige intrinsicR/Ly; values are
somewhat overpredicted. The overlapping experimdthat; error bars is however a caveat in
such analysis. Differences Ry/Lr; in the low magnetic shear region (x<0.4) are not observed
inthe JET case. In the AUG case, RA_T; differences occur both in the low and high magnetic
shear regions within x=0.3-0.6. Due to the difference imtional shear for x<0.4 in the AUG
case, it may be possible that reduced stiffness in the loargiegion (not predicted by the stiff
GLF23) may account for a further proportion of core confinetkfference.
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