
ITM Training Session March 2012
1

Creating an actor for a C(++) code
H.-J. Klingshirn

TF Leader : G. Falchetto,
Deputies: R. Coelho, D. Coster

EFDA CSU Contact Person: D. Kalupin

ITM Training Session, March 2012
IPP Garching

ITM Training Session March 2012
2

Goals of this session

This session is for everybody who wants to adapt a C(++) code
for the ITM platform (“turn it into an actor”)

What will be shown:

●How to turn a simple C code into an ITM-compatible subroutine

●How to turn this subroutine into a Kepler actor

●How to include this Kepler actor into a workflow

You can find these slides at
~klingshi/public/c_training/c-actor.pdf

(and soon on the documentation website)

ITM Training Session March 2012
3

• There is a C++ UAL interface to read and
write CPOs

• The CPOs are implemented as classes
– BLITZ++ library used for handling arrays

• Header files: $UAL/cppinterface

• Documentation: see UAL user guide at

• Example sources: $UAL/cppExamples
– Read/write (time-dependent) CPOs

Basic overview: C++

http://www.efda-itm.eu/ITM/imports/isip/public/isip_UAL_User_Guide.pdf

http://www.oonumerics.org/blitz/docs/blitz.html

http://www.efda-itm.eu/ITM/imports/isip/public/isip_UAL_User_Guide.pdf
http://www.oonumerics.org/blitz/docs/blitz.html

ITM Training Session March 2012
4

• Documentation how to turn your C++ code
into a Kepler actor: see

• The procedure for building an actor is the
same for a C and a C++ code
– the difference is that for the C code you have to

add a C++ wrapper

C++: creating an actor

http://www.efda-itm.eu/ITM/html/isip_fc2k_cpp.html

http://www.efda-itm.eu/ITM/html/isip_fc2k_cpp.html

ITM Training Session March 2012
5

Basic overview: C

• There is no dedicated UAL interface for C
→ every C code needs a C++ part to handle I/O
with CPOs

• ...but no worries, because C and C++ have by
design perfect interoperability
– you just have to be aware of some simple conventions

ITM Training Session March 2012
6

C Example: preliminaries

• Make sure your environment is set to data version 4.09a:

echo $DATAVERSION

should give “4.09a”

• Copy example:

cp r ~klingshi/public/c_training $HOME/public

cd $HOME/public/c_training/cexample

• Select compiler:

setenv OBJECTCODE linux.gnu_gw

ITM Training Session March 2012
7

C Example Code: outline

mycode_wrapper_function(<CPO objects>)
(src/mycode_wrapper.cpp,.h)

mycode_wrapper_function(<structs>)
(src/mycode_functions.c,.h)

main()
(src/mycode_driver.cpp)

●Driver: program for running the code standalone
(outside Kepler) – good for debugging
●Reads/writes CPOs from/to UAL, passes them
to the actor routinecalls

calls

●Main routine of actor
●“Wrapper”: copies data from CPOs into
code-specific data structures
●Passes data to routine that does the
actual work

●Performs the actual computation
(“your code”)

●Returns output data in struct
●Code-specific structs defined in
mycode_functions.h

ACTOR

C++

C++

C

ITM Training Session March 2012
8

The C++ main actor routine

Input + Output CPOs

Call to C routine

(From src/mycode_wrapper.cpp)

ITM Training Session March 2012
9

Calling C from C++

(From src/mycode_functions.h)
●C routines have to be declared
extern “C” for the C++ compiler

●C++ standard defines the
__cplusplus preprocessor directive
to indicate compilation by a C++
compiler

●Use this to make definitions in C
header files compatible with C++

ITM Training Session March 2012
10

C Example: compiling and
running standalone version

• To compile, run:

cd $HOME/public/c_training/cexample
make

This will run the commands specified in Makefile to

– Compile mycode_functions.c with the C compiler

– compiles mycode_wrapper.cpp with the C++ compiler

– zip the resulting object files (*.o) into the library archive file libmycode.a

• It also builds the standalone program mycode_driver
→ Linking the program has to be done with the C++ compiler!

• To run the standalone program:

./mycode_driver

ITM Training Session March 2012
11

C Example: building the actor

• Run FC2K:

fc2k

• Fill in the required information in FC2K:

– Open the provided configuration file: File → Open →
$HOME/public/c_training/cexample/
 MyCodefc2kconfiguration.linux.gnu_gw.xml

– Set the Kepler path: $HOME/kepler

– On tab “Source”, select the library:
$HOME/public/c_training/cexample/libmycode.a

• Click “Generate”

– This will compile the actor and install it in your Kepler environment

ITM Training Session March 2012
12

C Example: building the actor

ITM Training Session March 2012
13

C Example: building the actor

ITM Training Session March 2012
14

Try the new actor in a workflow

• Run Kepler

• Open example workflow:
$HOME/public/c_training/cexample/MyCode
Keplerworkflow.xml

• Click “Play” - the workflow should run

• After it finished executing, you should have output CPOS.

Check for files:
ls $HOME/public/itmdb/itm_trees/$TOKAMAKNAME/
$DATAVERSION/mdsplus/0/euitm_17151*

ITM Training Session March 2012
15

Example workflow

ITM Training Session March 2012
16

Development cycle:
updating the actor

• Every time you change your code you have to rebuild your actor

– run FC2K, load configuration, click “Generate”

• You can also do this automatically by running

fc2k MyCodefc2kconfiguration.$OBJECTCODE.xml

• In the example:

make updatekepleractor

(have a look at the Makefile for an example how to set this up)

ITM Training Session March 2012
17

A more complex C++ example

$HOME/public/c_training/cppexample/mycppfunction.cpp

http://www.efda-itm.eu/ITM/html/isip_fc2k_cpp.html

Described in detail at:

http://www.efda-itm.eu/ITM/html/isip_fc2k_cpp.html

ITM Training Session March 2012
18

C++ example

• Building the actor:

cd $HOME/public/c_training/cppexample

setenv OBJECTCODE linux.gnu_gw

make

fc2k → set up fields as before

• This example also shows how to use code parameters
More details on code parameters at:

http://www.efda-itm.eu/ITM/html/itm_code_parameters.html

http://www.efda-itm.eu/ITM/html/itm_code_parameters.html

