
ISIP tools training session, 4-6th May 2009

ISIP tools training
F. Imbeaux for the ISIP team

TF Leader : P. Strand,
Deputies: L-G. Eriksson, R. Coelho, M. Romanelli

EFDA CSU Contact Person: D. Kalupin

https://portal.efda-itm.eu/portal/authsec/portal/itm/ISIP
isip@mail.efda-itm.eu

23/04/2009

ISIP tools training session, 4-6th May 2009

Introduction

2

• Thank you for coming

• Objectives of the session :

– Understand the various ISIP tools

– Practice them on the Gateway

– Answer to questions / help

• This session has been organised for the ITM users, we try to
make it as interactive as possible

ISIP tools training session, 4-6th May 2009

Practical informations

3

• Lunch :

– we are going to the cantine by bus at 12h40

– coming back by bus at 13h30

– Stéphane has a card to pay for your lunch, group with him before
paying

• Going back to Aix : use buses at 18h20 Monday and
Tuesday, 16h20 on Wednesday

• Tuesday and Wednesday : since you have your pass :

– Pass through control

– Take first bus in the line, goes directly to IRFM

ISIP tools training session, 4-6th May 2009

Expected schedule (1)

4

• Challenge : participants have heterogeneous level

– First introduction to the ITM world

– Experienced users who are waiting for Kepler improvements

• Monday morning : slides

– Welcome and Overview

– Data organisation : CPOs, public and private data storage

– Data communication : Universal Access Layer

– Kepler : main features

• Monday afternoon

– Connection to Gateway, brief description of the Portal

– Creating private data storage

– Working with test programs and the UAL

– People who feel that they already know all this can have individual chats with
Jacqueline, Philippe, Bernard and myself

ISIP tools training session, 4-6th May 2009

Expected schedule (2)

5

• Tuesday : KEPLER practice + interactive practice / discussions

• Wednesday :

– Experimental data chain

– Interactive practice/discussions

– Feedback on the ISIP tools : perspectives and to do’s

ISIP tools training session, 4-6th May 2009

ISIP website

6

• The ISIP web page contains useful documentation and
examples

• https://portal.efda-itm.eu/portal/authsec/portal/itm/ISIP

• We are trying to set up a Gforge-based hotline for ITM users

• Meanwhile, email to isip@mail.efda-itm.eu when you face a
problem

ISIP tools training session, 4-6th May 2009
7

Overview of the tools

ISIP tools training session, 4-6th May 2009

Overview

8

• Data Structure : Physics data organised in Consistent Physical Objects
(CPO) : standard of communication between physics modules. Thought in
view of modular and flexible workflow design

– coded as XML schemas, a series of XSL transforms turn them into HTML
documentation, language specific libraries, machine description file, …

• UAL : Communication library between physics modules : allows to
exchange CPOs

– Available in Fortran, C++, Java, Matlab, Python

– Generated dynamically from the data structure

– Uses MDS+ as backend (HDF5 option exists but through MDS+ software)

– Read/Write from/to disk (default) or memory

• KEPLER : design and runs workflows, with wrapped physics modules as
elementary "acting units"

– Integrated platform developed in San Diego, used by some of the US FSP

– Drag and drop physical modules « actors » to create workflows

ISIP tools training session, 4-6th May 2009

KEPLER

9

ISIP tools training session, 4-6th May 2009

CPO transfer in KEPLER

10

• KEPLER is nice to link actors, but does NOT know about CPOs

– Arrows going from one actor to the other represent a CPO transfer

– This CPO transfer is done by the « wrapper », not by KEPLER

• Physics modules are subroutines expecting CPOs as input and output

– No need to use the UAL in a physics module, except for testing purposes

– Physics modules must be wrapped in a layer that deals with the UAL calls

– The wrapping is done automatically by the FC2K interface

– Wrapped physics modules are called « actors » and are usable by KEPLER

ISIP tools training session, 4-6th May 2009

Outside the Physics module

Framework (Kepler)

Calls the wrapper, specifying the
present time of the simulation

Wrapper

Calls UAL to GET the CPOin and
CPOout at the requested time slices

Physics code

Receives CPOin,
CPOout,

Physics
calculations

Updates CPOout

Updates data management nodes

Calls UAL to PUT the CPOout

Workspace

Temporary
database entry

Instance of the
whole datastructure

Contains the state
of all CPOs at all
time slices

UAL

UAL
11

ISIP tools training session, 4-6th May 2009
12

• The fundamental tools are up and running

– Data structure

– Data storage organisation

– UAL in Fortran, C++, Java, Python, Matlab

• Still difficulties with the wrapping tool « FC2K »

– A prototype exists, with several limitations

– Work is ongoing to remove these limitations and address complex
workflows

– Essentially a problem of ressources, no blocking feature

Status

ISIP tools training session, 4-6th May 2009
13

• You do not need to learn all ITM software and subtleties

• We try to provide you with the main useful information for

– Physics module providers (focus on CPO fine structure)

– KEPLER users (how to build a workflow)

– More advanced users / testers : UAL calls, wrapper concept

– (Experimental data providers)

• Most examples in this presentation are given for Fortran

Preliminar conclusions

ISIP tools training session, 4-6th May 2009
14

Consistent Physical Objects

ISIP tools training session, 4-6th May 2009

• All physics data are organised in CPOs
• Each upgrade of the ITM data structure is

released with a version : e.g. 4.06d, 4.07a
– 4.06d is presently the default version, mainly

IMP1+IMP3
– 4.07a has just been installed, contains many

new parts for IMP2 - IMP5

• Have a look to the ISIP webpage / Data
Structure to find the documentation on the
data structure

15

ISIP tools training session, 4-6th May 2009

CPO structure

• CPOs have a structure with many
signals below

– Substructures are frequent

– Fine structure depends on the physics

– All physics signals related to a CPO are
there

• Each CPO has its own time array (if
time-dependent)

• Each CPO has a bookkeeping sub-
structure (datainfo)

• Code-specific parameters are in
codeparam

16

ISIP tools training session, 4-6th May 2009

CPO declaration

• Use CPO library

use euitm_schemas

• Fortran declaration for a complete time-
dependent CPO and the module works
with multiple time slices :

type (type_mhd),pointer :: cpotest(:) => null()

allocate cpotest(ntime)

• If the physics module works on a single
time slice (or the CPO is not time-
dependent) :

type (type_mhd) :: cpotest

• See UAL documentation on the ISIP
web page / UAL for the syntax in the
other languages 17

ISIP tools training session, 4-6th May 2009

Individual signal description

• Name

• Definition

• Units

• Dimensionality

• Time-dependent or not

• To put a value in a signal :

allocate(cpotest%disp_par(npsi,nn,nm))

cpotest%disp_par = myvalue

• For a CPO with multiple time slices, do for each time slice :

allocate(cpotest(i)%disp_par(npsi,nn,nm)) ! Array size are NOT time-dependent

cpotest(i)%disp_par = myvalue

18

ISIP tools training session, 4-6th May 2009

Variable allocation (Fortran)

19

• Possible ITM types are : strings, vectors of strings, double precision real, integers,
arrays of doubles or integers

• CPOs with multiple time slices must be allocated

– allocate cpotest(ntime)

– Use euitm_deallocate to deallocate a CPO neatly (but not a CPOin nor a CPOout !!

– Use euitm_copy to copy neatly a CPO to another CPO variable (to use such a function,
you must have « use euitm_routines » together with « use euitm_schemas »)

• All ITM arrays are allocatable

– Must be allocated at all time slices. Array size is not time-dependent

– String length in string vectors is limiter to 132 (but the size of the vector can be as large
as you wish)

• Fortran strings are allocatable : character(len=132), dimension(:), pointer

– Must be allocated : to represent a long string of 200 characters, allocate to size (2) and fill each index
with the two parts of the string

allocate(cpotest(1)%codeparam%parameters(2))

cpotest(1)%codeparam%parameters = ‘First part of my string’

cpotest(1)%codeparam%parameters = ‘Second part of my string’

ISIP tools training session, 4-6th May 2009

Empty signals

20

• CPOs are quite complete and detailed; many signals can be
left empty

– Exception : mandatory to fill the « time » signal of time-dependent
CPOs

• By convention, empty signals are coded in the following way :

– Empty allocatable (all arrays) are unallocated (test with « unassociated
»)

– Empty reals are initialised as : -9.0D40

– Empty integers are initialised as : -999999999

ISIP tools training session, 4-6th May 2009

Time-independent signals in time-
dependent CPOs

21

• Time-dependent CPOs may contain time independent signals
(e.g. codeparam/codename)

– When you receive a CPO from the UAL (GET), the same value is
copied to all time slices

cpotest(i)%codeparam%codename has the same value for all time slices i

– When you prepare a CPO as output of your code, it is sufficient to fill
only the first time slice for time-independent signals. Only the first time
slice will be used by the UAL

cpotest(1)%codeparam%codename = ‘my_mhd_code’

ISIP tools training session, 4-6th May 2009
22

• To be integrated in the ITM platform, physics modules simply need
interfacing to the ITM data format :

– physics code receive CPOs as input and output :

Subroutine Physics_module(CPOin1,….,CPOinN, CPOout1,…,
CPOoutM)

use euitm_schemas ! contains the type definitions of all CPOs

• The IMP code developer can start interfacing his code to the ITM format
only by knowing the format of the CPOs. This documentation is available
on the ITM website.

– mapping the CPO data to the internal physics code variables is done by simple
instructions like :

my_iplasma = my_equilibrium%global_param%i_plasma

• At this stage, no knowledge of the UAL nor KEPLER is needed

Physics module

ISIP tools training session, 4-6th May 2009
23

• The codeparam subtree contains information
on the code specific parameters

• To be filled by the physics module for
traceability

– Codename, codeversion (obvious)

– Parameters : list of code-specific parameters
(use XML format and parser, see C. Konz talk)

– Output_diag ; list of code-specific
diagnostic/output, in the same XML format

– Output_flag : 0 if run successful, <0 values
mean the result should not be used

• For the moment, there is no management of
the code parameters by Kepler : the physics
module should read them directly from a file

Code-specific parameters

ISIP tools training session, 4-6th May 2009
24

Database

ISIP tools training session, 4-6th May 2009
25

• Input/output of the simulations are read/written by the UAL at
specific places on the Gateway

– Public database contains validated simulations, test data, machine
descriptions. Everybody can read from it but NOT write to it

– Each Gateway user has a private database at his name, in his account.
This database must be used for writing (e.g. the results of a simulation).
All Users can read from it.

• The ISIP web page / Database contains

– information on how to create and use the ITM databases

– information on public data (contents of the public database)

General organisation of data
storage on the Gateway

ISIP tools training session, 4-6th May 2009
26

• A data entry is an instance of the ITM data structure

– Contains a instance of all CPOs

– Some CPOs can have multiple occurrences in a single data entry (e.g.
to represent multiple equilibria with different resolutions, multiple
source terms for core transport, …)

– A data entry should be a consistent dataset : input or output of an
integrated simulation (try to stick to this rule when building your
workflows)

Data entries

ISIP tools training session, 4-6th May 2009
27

• A data entry is described by 4 characteristics :

– User : either « public » (refers to the public database) or the username
to refer to a private DB

– Machine : name of the tokamak, can be arbitrary (e.g. « test » for
testing purposes

– Shot : shot number

• Can be arbitrary for testing purposes

• Real shot number of corresponds to an experiment

• Machine descriptions are stored under shot = 0

– Run : simulation number, can represent various versions of a dataset,
or multiple simulations done for the same (user,machine,shot)

• Inside a data entry, a CPO is referred to by its occurrence
number

– Occurrence 0 is equivalent to no occurrence

Data entries

ISIP tools training session, 4-6th May 2009
28

• Before using Kepler or the UAL, you must specify in which
database (user, machine) you wish to work

• This is done by running a script that sets environment
variables

– Create_itm_data_env : is needed the first time to create a private
database for (user, machine, data version)

– Set_itm_data_env : for use of UAL only. One must specify (user,
machine, data version)

– ITMv1 : sets all environment variables for Kepler and UAL. User is set
to the private database of the current user, since this is the only one
where it is possible to write the results of the simulations. One must
specify (machine, data version)

• Functions will be provided to change database during a
workflow – these are being tested …

– Meanwhile you have to copy input entries to your private database

Data entries

