
1. Training - Garching 09.2011 . 2
1.1 1. Kepler installation at Gateway (Garching 09.2011) . 2
1.2 2. Tutorial - Introduction to Kepler (Garching 09.2011) . 2

1.2.1 1. Tutorial - Introduction to Kepler - Basics (Garching 09.2011) . 3
1.2.2 2. Tutorial - Introduction to Kepler - Loops (Garching 09.2011) . 16
1.2.3 3. Tutorial - Introduction to Kepler - Python (Garching 09.2011) . 29

1.3 3. Tutorial - Using FC2K with Fortran, C++ (Garching 09.2011) . 34
1.4 4.1 Tutorial - ISE - visualizing data (Garching 09.2011) . 53
1.5 4.2 Tutorial - ISE - executing Kepler workflows (Garching 09.2011) . 58
1.6 5. Tutorial - HPC2K (Garching 09.2011) . 67
1.7 6. Tutorial - Parametric grid job submission (Garching 09.2011) . 76

Training - Garching 09.2011

Navigate space

1. Kepler installation at Gateway (Garching 09.2011)
2. Tutorial - Introduction to Kepler (Garching 09.2011)
3. Tutorial - Using FC2K with Fortran, C++ (Garching 09.2011)
4.1 Tutorial - ISE - visualizing data (Garching 09.2011)
4.2 Tutorial - ISE - executing Kepler workflows (Garching 09.2011)
5. Tutorial - HPC2K (Garching 09.2011)
6. Tutorial - Parametric grid job submission (Garching 09.2011)

Accessing gateway from Mac OS X Lion

Mac OS X Lion users have to switch from NX Client to NX Player in order to access gateway.
You can get NX Player here: link

1. Kepler installation at Gateway (Garching 09.2011)

Kepler installation at Gateway

There are three Kepler sessions that will be conducted during Code Camp.

Kepler basics - this session will cover basics of Kepler
integration of ITM tools within Kepler - this part will cover more sophisticated material (it will require additional tools as well)
Grid/HPC jobs submission - tutorials will cover the usage of workflows for submission of jobs into various distributed computing
environments.

Each of these parts require Kepler 4.09a installation. Additionally, ITM related training requires 4.09a database and additional tools: actors,
Fortran codes, C++ codes. In order to install Kepler you have to follow the instructions.

All-in-one installation

You can run an installer that will prepare everything for all sessions. This is a recommended solution even if you do not plan to participate in
all of them. In order to use the all-in-one installer, please execute the following script:

~zokt/public/tutorials/installer.sh

An add-on installer

If you took part in the basic Kepler part installation time, then you only need to install an add-on containing additional data for ITM tools and
GRID+HPC sessions. In this case, please execute the following script:

~zokt/public/tutorials/addon.sh

Running instructions

Please remember that during the tutorial you should run in an interactive session. Before running Kepler, please execute:always

itmgo

You should also load an ITM initialization script:

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null

2. Tutorial - Introduction to Kepler (Garching 09.2011)

http://web01.nomachine.com/preview/download-package.php?Prod_Id=13

This page is devoted to Kepler basic training - Garching 09.2011

Navigate space

1. Tutorial - Introduction to Kepler - Basics (Garching 09.2011)
2. Tutorial - Introduction to Kepler - Loops (Garching 09.2011)
3. Tutorial - Introduction to Kepler - Python (Garching 09.2011)

Go back to Training page

1. Tutorial - Introduction to Kepler - Basics (Garching 09.2011)

Introduction to Kepler - Basics

Table of Contents

Introduction to Kepler - Basics
1. Introduction
2. Requirements for the tutorial

2.1 Using ITM Kepler installation at Gateway
3. Executing simple workflows

3.1 Hello world workflow
3.1.1 Using existing "Hello world" workflow
3.1.2 Using existing "Hello world - with debug" workflow
3.1.3 Building "Hello world" from the scratch

3.2 Basic actors, explained - String Constant, Constant, Expression
3.3 Using DDF Boolean Select and Select in order to determine input for processing
3.4 Using Boolean Switch and Switch in order to determine output for processing
3.5 Using Relations for splitting and combining data flow
3.6 Relations, Paths and Synchronization
3.7 If-else workflow

3.7.1 Using existing "if-else" workflow
3.7.2 Building "if-else" from the scratch
3.7.3 Building "if-else-expression" from the scratch

1. Introduction

This tutorial is designed to introduce the concept of building ITM tools based workflows within Kepler.

Kepler is a workflow engine and design platform for analyzing and modeling scientific data. Kepler provides a graphical interface and a library
of pre-defined components to enable users to construct scientific workflows which can undertake a wide range of functionality. It is primarily
designed to access, analyse, and visualise scientific data but can be used to construct whole programs or run pre-existing simulation codes.

Kepler builds upon the mature Ptolemy II framework, developed at the University of California, Berkeley. Kepler itself is developed and
maintained by the cross-project Kepler collaboration.

The main components in a Kepler workflow are actors, which are used in a design (inherited from Ptolemy II) that separates workflow
components ("actors") from workflow orchestration ("directors"), making components more easily reusable. Workflows can work at very levels
of granularity, from low-level workflows (that explicitly move data around or start and monitor remote jobs, for example) to high-level
workflows that interlink complex steps/actors. Actors can be reused to construct more complex actors enabling complex functionality to be
encapsulated in easy to use packages. A wide range of actors are available for use and reuse.

NX connection to the Gateway

This tutorial assumes that Gateway accounts will be used for starting up Kepler application.
If you are not familiar with NX setup for the Gateway, take a look at following location NX setup

2. Requirements for the tutorial

https://kepler-project.org/

Backing up Kepler home directory

Before you proceed with installation of the Kepler application be sure to make a backup of your Kepler home directory

mv ~/.kepler ~/.kepler_09_2011
mv ~/kepler ~/kepler_09_2011
mv ~/serpens ~/serpens_09_2011

2.1 Using ITM Kepler installation at Gateway

In order to make Kepler installation for the tutorial faster we will use preinstalled version of the Kepler that is available for Gateway users.

In order to install Kepler and ITM example workflow you have to follow instructions at following page:

Kepler installation

1. Kepler installation at Gateway (Garching 09.2011)

After you follow all the installation steps, you should see Kepler loading.

Starting Kepler

No matter which way have you used to install Kepler, make sure to export some variables before you start Kepler again.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

3. Executing simple workflows

In order to execute workflow, you have to load workflow XML file into Kepler. During this tutorial session we will use following workflows:

"Hello world" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/Hello_World.xml
"Hello world with debug" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/Hello_World_Debug.xml
"Simple Actors.xml" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/simple_actors.xml
"Input port selection" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/input_selector.xml
"Output port selection" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/output_selector.xml
"Relations" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/relation.xml
"If-else-simple" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/if_else_simple.xml
"If-else-simple-expression" - it is installed as: $HOME/serpens/demo-ITM-09.2011/workflow/basic/if_else_simple_expression.xml

3.1 Hello world workflow

3.1.1 Using existing "Hello world" workflow

After this exercise you will:

know how to start Kepler
know how to load simple workflow
know how to execute workflow
know how to animate workflow

1.

2.

3.

1.

2.

3.
4.

Exercise no. 1 (approx. 10 min)

Film available: http://www.youtube.com/watch?v=1xsPH6Mnzx0
In this exercise you will execute simple Kepler workflow. In order to this follow the instructions:

Start Kepler application by issuing:

kepler

Open "Hello world" workflow by issuing: File -> Open and navigate to:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/Hello_World.xml

After workflow is opened, press "Play" button.

Workflow should generate output within Display actor

Animating workflows

In Kepler it is possible to animate workflows during execution. In order to animate workflow you have
to turn on animations. You can do this by choosing: Tools -> Animate at Runtime...
Demo movie for this feature can be found at following location: animation

3.1.2 Using existing "Hello world - with debug" workflow

After this exercise you will:

know how to start Kepler
know how to load simple workflow
know how to execute workflow
know how to listen to the actor

Exercise no. 2 (approx. 10 min)

Film available: http://www.youtube.com/watch?v=EVGSXC4kcks
In this exercise you will execute simple Kepler workflow with Debug information. In order to this follow the instructions:

Start Kepler application by issuing:

kepler

Open "Hello world debug" workflow by issuing: File -> Open and navigate to:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/Hello_World_Debug.xml

After workflow is opened, "Right-click" actor and choose "Listen to actor"Expression
Press "Play" button

Workflow should generate output within Display actor and should print debug information generated by Expression
actor

3.1.3 Building "Hello world" from the scratch

http://www.youtube.com/watch?v=1xsPH6Mnzx0
http://scilla.man.poznan.pl/euforia/movies/animation.ogg
http://www.youtube.com/watch?v=EVGSXC4kcks

1.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

14.

After this exercise you will:

know how to start Kepler
know how to build simple workflow
know how to connect elements
know how to add elements to the workflow
know how to search for the actors within Kepler's library

Exercise no. 3 (approx. 15)

Film available: http://www.youtube.com/watch?v=DXXYnuDjnWw

In this exercise you will build simple "Hello World" workflow and execute it. In order to get this task done, follow the instructions:

Start Kepler application by issuing:

kepler

Type in "SDF" into "Search" field and press "Search" button
Drag and Drop into workflowSDF director
Right-click on and choose "Configure Director"SDF director
Set number of iterations to "1"
Type in "String" into "Search" field and press "Search" button
Add "String Constant" actor to the workflow
Right-click "String Constant" actor and choose "Configure Actor"
Type "Hello world!" into "value" field
Commit changes
Type in "Display" into "Search" field and press "Search" button
Add "Display" actor into workflow
Connect "String Constant" actor with "Display" actor

Intermediate results

After workflow is ready, press "Play" button.

Workflow should generate output within Display actor

3.2 Basic actors, explained - String Constant, Constant, Expression

http://www.youtube.com/watch?v=DXXYnuDjnWw

1.

2.

3.

4.

After this exercise you will:

know the difference between Constant and String Constant
know how to use Expression actor

Exercise no. 4 (approx. 20 minutes)

Start Kepler application by issuing:

kepler

Load example workflow from following location

$HOME/serpens/demo-ITM-09.2011/workflow/basic/simple_actors.xml

You should see workflow similar to one below

After workflow is loaded, press "Play" button

3.3 Using DDF Boolean Select and Select in order to determine input for processing

After this exercise you will:

know how to determine which input data should be processed
know how to choose between DDF Boolean Select and Select actor

1.

2.

3.

4.

5.

Exercise no. 5 (approx. 20 minutes)

Start Kepler application by issuing:

kepler

Load example workflow from following location

$HOME/serpens/demo-ITM-09.2011/workflow/basic/input_selector.xml

You should see workflow similar to one below

After workflow is loaded, press "Play" button

DDF Boolean Select vs. Select in a nutshell

DDF Boolean Select vs. Select
DDF Boolean Select can choose between two values
Select can choose between multiple values
DDF Boolean Select uses "true", "false" to determine input port
Select uses integer values (port index) to determine input port. Indexing starts with 0
Both, DDF Boolean Select and Select, can use any type of input (e.g. String, integer,
boolean, etc.)

3.4 Using Boolean Switch and Switch in order to determine output for processing

After this exercise you will:

know how to determine where output data will be sent
know how to choose between Boolean Switch and Switch actor

1.

2.

3.

4.

5.

Exercise no. 6 (approx. 20 minutes)

Start Kepler application by issuing:

kepler

Load example workflow from following location

$HOME/serpens/demo-ITM-09.2011/workflow/basic/output_selector.xml

You should see workflow similar to one below

After workflow is loaded, press "Play" button

Boolean Switch vs. Switch in a nutshell

DDF Boolean Select vs. Select
Boolean Switch can choose between two output ports (these ports are referred as /true false
)
Select can choose between multiple output ports
Boolean Switch uses "true", "false" to determine output port
Switch uses integer values (port index) to determine output port. Indexing starts with 0
Both, Boolean Switch and Switch, can use any type of input/output (e.g. String, integer,
boolean, etc.)

3.5 Using Relations for splitting and combining data flow

1.

2.

3.

4.

After this exercise you will:

know how what Relation is
know how to use Relations in order to split/combine data

Exercise no. 7 (approx. 20 minutes)

Start Kepler application by issuing:

kepler

Load example workflow from following location

$HOME/serpens/demo-ITM-09.2011/workflow/basic/relation.xml

You should see workflow similar to one below

After workflow is loaded, press "Play" button

3.6 Relations, Paths and Synchronization

1.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

After this exercise you will:

know how to add elements into workflow
know hot to use expressions
know how to synchronize workflow's execution
know how to use parametrs
know how to use relations

Exercise no. 8 (approx. 20 minutes)

Film available: http://www.youtube.com/watch?v=OCO9L5MzUrM

Start Kepler application by issuing:

kepler

Add director into workflowDDF
Add into workflow and set it's value to "true" (double click and enter "true")Constant Constant
Set "firingCountLimit" to "1" (Right click -> Configure Actor -> firingCountLimit Text Field)Constant
Add next to the Relation Constant
Connect and Relation Constant::output
Add and rename it to "a" (Right click -> Customize name)Parameter
Set value of to "1" (double click)a a
Add and rename it to "b" (Right click -> Customize name)Parameter
Set value of to "2" (double click)b b
Add into workflow and rename it to "Send a to output"Constant
Set value to "a"Send a to output
Add into workflow and rename it "Send b to output"Constant
Set value to "b"Send b to output
Connect with Send a to output::trigger Relation
Connect with Send b to output::trigger Relation
Add to workflow and connect it with Relation Send a to output
Add to workflow and connect it with Relation Send b to output
Add to workflow and connect relation connected to Display Send a to output
Set "Display name" (Right click -> Customize Name) to "Value a"Display
Add to workflow and connect it with other relationDisplay
Set "Display name" (Right click -> Customize Name) to "Value b"Display
Add to the workflowExpression
Add input port to the (Right click -> Configure Ports -> Add, select checkbox "in")input_a Expression
Add input port to the (Right click -> Configure Ports -> Add, select checkbox "in")input_b Expression
Connect with relation bound to Expression::input_a Send a to output
Connect with relation bound to Expression::input_b Send b to output
Add to the workflow and set it's "Display name" to "Result"Display
Connect with *Expression::output"Result::input

http://www.youtube.com/watch?v=OCO9L5MzUrM

30.

31.

32.
33.

Set value to "a+b" (Double click)Expression Expression
At this point your workflow should be similar to the one below

Intermediate results

Execute workflow

Simple modification in order to make Kepler workflow fail
Set value to "a/b"Expression
Set value to "0"b

3.7 If-else workflow

3.7.1 Using existing "if-else" workflow

After this exercise you will:

know how to use different paths for data flow
know how to split workflow execution path
V know how to use actorBoolean Switch

1.

2.

3.

Exercise no. 9 (approx. 10 minutes)

Film available: http://www.youtube.com/watch?v=rr03bekyiDU

In this exercise you will execute simple Kepler workflow. In order to this follow the instructions:

Start Kepler application by issuing:

kepler

Open "If-else" workflow by issuing: File -> Open and navigate to:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/if_else_simple.xml

After workflow is opened, press "Play" button

Workflow should generate output within Display actor

3.7.2 Building "if-else" from the scratch

After this exercise you will:

know how to use different paths for data flow
know how to split workflow execution path
know how to use actorBoolean Switch

Exercise no. 10 (approx. 20 minutes)

Film available: http://www.youtube.com/watch?v=3M7IFyzSTAY

In this exercise you will build "if-else" workflow.

You should complete previous examples before starting this one

In this example it is assumed that you already know how to use actor/director browser (left panel) and how to
put actors into workflow (right panel)

http://www.youtube.com/watch?v=rr03bekyiDU
http://www.youtube.com/watch?v=3M7IFyzSTAY

1.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

27.
28.

Start Kepler application by issuing:

kepler

Drag and Drop "DDF Director" into workflow
Drag and Drop "String Constant" actor into workflow
Change it's name to "String Hello" (Right-click -> Custimize name)
Change it's value to "Hello world will test if-else" (Right-click -> Configure Actor -> value)
Change it's firingCountLimit to "1" (Right-click -> Configure Actor -> firingCountLimit)
Drag and Drop "Parameter" actor into workflow
Change it's name to "a" (Right-click -> Customize name)
Change it's value to "1" (Double click -> value)
Drag and Drop "Parameter" actor into workflow
Change it's name to "b" (Right-click -> Customize name)
Change it's value to "2" (Double click -> value)
Drag and Drop "Boolean Switch" actor into workflow
Drag and Drop "Display" actor into workflow next to "Boolean Switch" actor
Change it's name to "Display if"
Drag and Drop "Display" actor into workflow below "Display if" actor
Change it's name to "Display else"
Drag and Drop "Constant" actor into workflow below "Boolean Switch" actor
Change it's value to "a < b" (Right-click -> Configure Actor -> value)
Change it's firingCountLimit to "1" (Right-click -> Configure Actor -> firingCountLimit)
After all actors are at the workflow's area, you have to connect them
Connect with Boolean Switch::trueOutput Display if::input
Connect with Boolean Switch::falseOutput Display else::input
Connect with Boolean Switch::input String Hello::output
Connect with Boolean Switch::control Constant::output
At this point your workflow should be similar to the one below

Intermediate results

press "Play" button

Workflow should generate output within "Display else" actor
Change value of to "a > b" and execute workflow once againConstant
Save the workflow (e.g. as ~/my_workflow.xml) - we will need it in next excersise

3.7.3 Building "if-else-expression" from the scratch

1.

2.

3.
4.
5.
6.
7.
8.

9.
10.
11.
12.
13.
14.

15.

After this exercise you will:

know how to use different paths for data flow
know how to split workflow execution path
know how to use actorBoolean Switch
know how to use Expression
know how to use data flowing within workflow

Exercise no. 11 (approx. 20 minutes)

Film available: http://www.youtube.com/watch?v=qC6eVPXW4Fs

In this exercise you will build "if-else-expression" workflow.

You should complete previous examples before starting this one

In this example it is assumed that you already know how to use actor/director browser (left panel) and how to
put actors into workflow (right panel)

Start Kepler application by issuing:

kepler

Load workflow that you have previously saved (~/my_workflow.xml) or open workflow at following location:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/if_else_simple.xml

Remove between and (select link and press "Delete" or choose)link Display if Boolean Switch Edit -> Delete
Remove between and link Display else Boolean Switch
Add between and Expression Display if Boolean Switch
Set Display name to "Expression if"Expression
Add input port into in Expression if
Set value toExpression if

in + " - this was added by Expression if"

remember to copy " as well!
Connect with Expression if::in Boolean Switch::trueOutput
Connect with Expression if::output Display if::input
Add between and Expression Display else Boolean Sitch
Set Display name to "Expression else"Expression
Add input port into in Expression else
Set value toExpression else

in + " - this was added by Expression else"

remember to copy " as well!
Connect with Expression else::in Boolean Switch::falseOutput

http://www.youtube.com/watch?v=qC6eVPXW4Fs

16.

17.

18.

Connect with Expression else::output Display else::input
At this point your workflow should be similar to the one below

Intermediate results

press "Play" button

workflow should generate output within "Display if" actor
Change value of to "a < b" and execute workflow once againConstant

Animating workflows

In Kepler it is possible to animate workflows during execution. In order to animate workflow you have to turn on animations.
You can do this by choosing: Tools -> Animate at Runtime...
Demo movie for this feature can be found at following location: animation

2. Tutorial - Introduction to Kepler - Loops (Garching 09.2011)

Introduction to Kepler - Loops

Table of Contents

Introduction to Kepler - Loops
1. Introduction
2. Requirements for the tutorial

2.1 Using ITM Kepler installation at Gateway
3 Loops within Kepler

3.1 Executing simple loop example (classic)
3.2 Building simple loop from the scratch
3.3 Executing simple loop example (using relation instead of SampleDelay)
3.4 Executing simple loop example (using parameters and Variable Setter)
3.5 Executing simple loop example (without DDF Boolean Select actor)
3.6 Executing advanced loop workflow (Composite loop + Repeat)
3.7 Executing advanced loop workflow (Composite loop + feedback)
3.8 Creating a loop using PythonScript actor
3.9 Creating a time-loop with series plotting

http://scilla.man.poznan.pl/euforia/movies/animation.ogg

1. Introduction

This tutorial is designed to introduce the concept of building simple loop workflows within Kepler-1.0/Kepler-2.0. These workflows are
assumed to repeat processing until some final conditions are met.

Kepler is a workflow engine and design platform for analyzing and modeling scientific data. Kepler provides a graphical interface and a library
of pre-defined components to enable users to construct scientific workflows which can undertake a wide range of functionality. It is primarily
designed to access, analyse, and visualise scientific data but can be used to construct whole programs or run pre-existing simulation codes.

Kepler builds upon the mature Ptolemy II framework, developed at the University of California, Berkeley. Kepler itself is developed and
maintained by the cross-project Kepler collaboration.

The main components in a Kepler workflow are actors, which are used in a design (inherited from Ptolemy II) that separates workflow
components ("actors") from workflow orchestration ("directors"), making components more easily reusable. Workflows can work at very levels
of granularity, from low-level workflows (that explicitly move data around or start and monitor remote jobs, for example) to high-level
workflows that interlink complex steps/actors. Actors can be reused to construct more complex actors enabling complex functionality to be
encapsulated in easy to use packages. A wide range of actors are available for use and reuse.

2. Requirements for the tutorial

Backing up Kepler home directory

Before you proceed with installation of the Kepler application be sure to make a backup of your Kepler home directory

mv ~/.kepler ~/.kepler_09_2011
mv ~/kepler ~/kepler_09_2011
mv ~/serpens ~/serpens_09_2011

2.1 Using ITM Kepler installation at Gateway

In order to make Kepler installation for the tutorial faster we will use preinstalled version of the Kepler that is available for Gateway users.

In order to install Kepler and ITM example workflow you have to follow instructions at following page:

Kepler installation

1. Kepler installation at Gateway (Garching 09.2011)

After you follow all the installation steps, you should see Kepler loading.

Starting Kepler

No matter which way have you used to install Kepler, make sure to export some variables before you start Kepler again.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

3 Loops within Kepler

In this section of tutorial we will go through basic concepts of looping within Kepler. We will execute simple loop, build it from the scratch and,
at the end, we will go through more complex examples of loops.

3.1 Executing simple loop example (classic)

After this exercise you will:

know how to build simple loops
know how to use SampleDelay actor
know how to create loop condition checks
know difference between SDF and DDF Directors

https://kepler-project.org/

1.

2.

3.

4.

1.

Exercise no. 1 (approx. 15 minutes)

Film available: http://www.youtube.com/watch?v=fJlV7Jd30cQ

In this exercise you will execute simple loop example. In order to this follow the instructions:

If Kepler is not already running start it by issuing:

kepler

Open workflow

$HOME/serpens/demo-ITM-09.2011/workflow/basic/loops/simple_loop.xml

You should see following workflow loaded into Kepler

After workflow is loaded, execute it

workflow should generate output within Display actor
You can change values and see what happens after you start workflow againConstant

3.2 Building simple loop from the scratch

After this exercise you will:

know how to build simple loops
know how to use SampleDelay actor
know how to create loop condition checks
know difference between DDF and SDF directors

Exercise no. 2 (approx. 30 minutes)

Film available: http://www.youtube.com/watch?v=oYdOYnK7WI4

In this exercise you will build simple loop. In order to this follow the instructions:

Start Kepler application by issuing:

kepler

http://www.youtube.com/watch?v=fJlV7Jd30cQ
http://www.youtube.com/watch?v=oYdOYnK7WI4

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

12.
13.

14.
15.
16.
17.
18.
19.

20.
21.

Add into workflowDDF director
Add into workflow, set it's value to Constant 5
Add actor to the workflowDDF Boolean Select
Connect with Constant::output DDF Boolean select::falseInput
Add next to Relation DDF Boolean Select
Connect (we will call it) with Relation Relation A DDF Boolean Select::output
Add actor to the workflow (next to)Expression Relation A
Add input port into in Expression
Connect with Relation A Expression::in
Set value toExpression

in > 0

Add next to (we will call it)Relation Expression Relation B
Connect with Expression::output Relation B

Intermediate result

Add actor to workflowSampleDelay
Change port direction to (Right click -> Configure Ports -> Direction)SampleDelay::input EAST
Change port direction to (Right click -> Configure Ports -> Direction)SampleDelay::output WEST
Connect with SampleDelay::output DDF Boolean Select::control
Connect with SampleDelay::input Relation B
Set value toSampleDelay

{false}

Add next to Boolean Switch Relation B
Connect with Boolean Switch::control Relation B

22.

23.
24.
25.
26.

27.
28.
29.
30.
31.
32.
33.

Connect with Boolean Switch::input Relation A

Intermediate result

Add into workflow and set it's name to Expression Decrease counter
Add input port into and set it's Direction to in Decrease counter EAST
Set output port Direction to WEST
Set value toExpression

in - 1

Connect with Decrease counter::output DDF Boolean Select::trueInput
Connect with Decrease counter::input Boolean Switch::trueOutput
Add next to Is Present Boolean Switch
Connect with Is Present::input Boolean Switch::falseOutput
Add next to Stop Is Present
Connect with Stop::input Is Present::output
Add next to Display Relation A

34.

35.

36.

Connect with Display::input Relation A

Intermediate result

After workflow is opened, press "Play" button

You can change values and see what happens next time you start workflowConstant

3.3 Executing simple loop example (using relation instead of SampleDelay)

After this exercise you will:

know how to build simple loops
know how to create loop condition checks

1.

2.

3.

Exercise no. 3 (approx. 15 minutes)

In this exercise you will execute simple loop example. In order to this follow the instructions:

If Kepler is not already running start it by issuing:

kepler

#Open workflow

$HOME/serpens/demo-ITM-09.2011/workflow/basic/loops/simple_loop_relation.xml

You should see following workflow loaded into Kepler

After workflow is loaded, execute it

workflow should generate output within Display actor
You can change values and see what happens after you start workflow againConstant

3.4 Executing simple loop example (using parameters and Variable Setter)

After this exercise you will:

know how to build simple loops
know how to use Variable Setter actor
know how to create loop condition checks

1.

2.

3.

4.

Exercise no. 4 (approx. 15 minutes)

In this exercise you will execute simple loop example. In order to this follow the instructions:

If Kepler is not already running start it by issuing:

kepler

Open workflow

$HOME/serpens/demo-ITM-09.2011/workflow/basic/loops/loop-variables.xml

You should see following workflow loaded into Kepler

After workflow is loaded, execute it

workflow should generate output within Display actor
You can change values and see what happens after you start workflow againConstant

3.5 Executing simple loop example (without DDF Boolean Select actor)

After this exercise you will:

know how to build simple loops
know how to create loop condition checks

1.

2.

3.

4.

1.

Exercise no. 5 (approx. 15 minutes)

In this exercise you will execute simple loop example. In order to this follow the instructions:

If Kepler is not already running start it by issuing:

kepler

Open workflow

$HOME/serpens/demo-ITM-09.2011/workflow/basic/loops/loop-no-ddf-b-s.xml

You should see following workflow loaded into Kepler

After workflow is loaded, execute it

workflow should generate output within Display actor
You can change values and see what happens after you start workflow againConstant

3.6 Executing advanced loop workflow (Composite loop + Repeat)

After this exercise you will:

know how to utilize loop concept
know how to build advanced loop workflows
know how to use actorRepeat
know how to set value of the parameter

Exercise no. 6 (approx. 15 minutes)

Film available: http://www.youtube.com/watch?v=muhBH7jM5dU

In this exercise you will execute advanced loop workflow. In order to this follow the instructions:

Start Kepler application by issuing:

kepler

http://www.youtube.com/watch?v=muhBH7jM5dU

2.

3.

4.

Open workflow

$HOME/serpens/demo-ITM-09.2011/workflow/basic/loops/array_loop_copy_files.xml

After workflow is loaded

You can open composite actor by right clicking it and choosing "Open"

You can start workflow by pressing Play button

workflow should copy input files from/to

$HOME/serpens/demo-ITM-09.2011/data -> $HOME/serpens/demo-ITM-09.2011/output

You can open terminal and verify it's execution results

ls -la ~/serpens/demo-ITM-09.2011/data
ls -la ~/serpens/demo-ITM-09.2011/output

3.7 Executing advanced loop workflow (Composite loop + feedback)

After this exercise you will:

know how to utilize loop concept
know how to build advanced loop workflows
know how to use actorRepeat
know how to set value of the parameter

Exercise no. 7 (approx. 15 minutes)

1.

2.

3.

4.

Film available: http://www.youtube.com/watch?v=4xjLcI776vg

In this exercise you will execute advanced loop workflow with feedback. In order to this follow the instructions:

Start Kepler application by issuing:

kepler

Open workflow

$HOME/serpens/demo-ITM-09.2011/workflow/basic/loops/array_loop_composite_repeat_feedback.xml

After workflow is loaded

open composite actor by right clicking it and choosing "Open"

You can execute it by pressing Play button

workflow should generate output within Display actor

http://www.youtube.com/watch?v=4xjLcI776vg

Animating workflows

In Kepler it is possible to animate workflows during execution. In order to animate workflow you have to turn on animations.
You can do this by choosing: Tools -> Animate at Runtime...
Demo movie for this feature can be found at following location: animation

3.8 Creating a loop using PythonScript actor

In some cases, looping can be very conveniently incorporated in Kepler workflow inside a script written in Python
programming language. This topic will be covered in the next part of the tutorial, where Python script embedding is
described in details. Please refer to it later: 3. Tutorial - Introduction to Kepler - Python (Garching 09.2011)

3.9 Creating a time-loop with series plotting

After this exercise you will:

know how to provide data from the loop to the plotting actor

http://scilla.man.poznan.pl/euforia/movies/animation.ogg

1.

2.
3.
4.
5.

6.
7.

8.

9.
10.

11.
12.

13.

Exercise no. 8 (approx. 15 minutes)

In this exercise you will create a simple loop containing some potentially time-consuming operations which will be plotted live.
In order to do this follow the instructions:

Start Kepler application by issuing:

kepler

You can find this workflow at following location:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/python/xyplotter.xml

Put DDF Director.
Put Constant actor and set its to . This will be the starting source for the example workflow.firingCountLimit 1
Put a relation symbol (Ctrl+click) next to the Constant and link them.
Put an Expression actor and add an input port named . Let's set the expression to which indicates that we willin in * in
plot the square function. Then connect the relation with port.in
Put an XYPlotter actor and connect its with the relation symbol and with Expression actor's output port.inputX inputY
Your workflow should look like the one presented below. It applies some function to input data and plots it. However, it
works for a single value now. We need to create a loop.

Put another Expression actor. Add an input port named , set expression to and connect the input port within in + 1
relation. This is responsible for the step of loop.
Create another relation symbol next to this Expression actor and connect them.
Put next Expression actor. Again add an input port named , set expression to and connect the input port within in < 10
the just created relation. This is responsible for loop termination when it reaches specific point.
Put Boolean Switch actor, connect its port to the expression and its port to the expression.input in + 1 control in < 10
Now we want to simulate the time-consuming behaviour, so we are going to add an artificial sleep time. To do this, you
need to choose from menu and set as a value . ATools -> Instantiate Component Class name ptolemy.actor.lib.Sleep
new Sleep actor will appear. It's purpose is to grab some input, wait for the specified amount of time and then send the
data. For this workflow, please set its to 1000 (the unit here is milliseconds, so we will simulate one secondsleepTime
of time-consuming operations).
Connect Boolean Switch port with Sleep's , and Sleep's to the relation symbol at the beginningtrueOutput input output
of the loop. Your workflow should look like the one below. You can run it and you will see that the output is plotted live
and updated every second (ie. every time it receives new data).

3. Tutorial - Introduction to Kepler - Python (Garching 09.2011)

Introduction to Kepler - Python

Table of Contents

Introduction to Kepler - Python
1. Introduction
2. Requirements for the tutorial

2.1 Using ITM Kepler installation at Gateway
3. Using Python code within Kepler actor
4. Creating a loop using PythonScript actor
5. An advanced loop using PythonScript actor

1. Introduction

This tutorial is designed to introduce the concept of building simple loop workflows within Kepler-1.0/Kepler-2.0. These workflows are
assumed to repeat processing until some final conditions are met.

Kepler is a workflow engine and design platform for analyzing and modeling scientific data. Kepler provides a graphical interface and a library
of pre-defined components to enable users to construct scientific workflows which can undertake a wide range of functionality. It is primarily
designed to access, analyse, and visualise scientific data but can be used to construct whole programs or run pre-existing simulation codes.

Kepler builds upon the mature Ptolemy II framework, developed at the University of California, Berkeley. Kepler itself is developed and
maintained by the cross-project Kepler collaboration.

The main components in a Kepler workflow are actors, which are used in a design (inherited from Ptolemy II) that separates workflow
components ("actors") from workflow orchestration ("directors"), making components more easily reusable. Workflows can work at very levels
of granularity, from low-level workflows (that explicitly move data around or start and monitor remote jobs, for example) to high-level
workflows that interlink complex steps/actors. Actors can be reused to construct more complex actors enabling complex functionality to be
encapsulated in easy to use packages. A wide range of actors are available for use and reuse.

2. Requirements for the tutorial

Backing up Kepler home directory

Before you proceed with installation of the Kepler application be sure to make a backup of your Kepler home directory

mv ~/.kepler ~/.kepler_09_2011
mv ~/kepler ~/kepler_09_2011
mv ~/serpens ~/serpens_09_2011

2.1 Using ITM Kepler installation at Gateway

In order to make Kepler installation for the tutorial faster we will use preinstalled version of the Kepler that is available for Gateway users.

In order to install Kepler and ITM example workflow you have to follow instructions at following page:

Kepler installation

1. Kepler installation at Gateway (Garching 09.2011)

After you follow all the installation steps, you should see Kepler loading.

Starting Kepler

No matter which way have you used to install Kepler, make sure to export some variables before you start Kepler again.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

https://kepler-project.org/

3. Using Python code within Kepler actor

After this exercise you will:

know how to use Python script inside a Kepler actor

1.

2.

3.

4.

5.

6.

7.

1.

2.
3.

4.

5.

Exercise no. 1 (approx. 20 minutes)

In this exercise you will create a simple actor that will use Python script. You can find this workflow at following location:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/python/python_script.xml

In order to this follow the instructions:

Start Kepler application by issuing:

kepler

Instantiate a PythonScript actor by choosing menu and setting as a value Tools -> Instantiate Component Class name
.ptolemy.actor.lib.python.PythonScript

This actor starts with zero ports. They need to be added manually. Please right-click on PythonScript and choose
.Configure Ports

Add an input port named and output port named .in out

Kepler's automatic type resolver may not correctly infer types of PythonScript ports due to dynamic
features of Python programming language. This may lead to errors and unexpected behaviour. Thus
you need to specify these types explicitly. For this tutorial, please set type of to and type of in int out
to .arrayType(int)

By default Kepler initialises the parameter of this actor to be of type . To develop a script in Python, it needsscript Line
to be changed. Please right-click on PythonScript and choose . Go to and select Configure Actor Preferences expert

.mode
Close the window with actor's preferences and once again start with right-clicking and choosing . AgainConfigure Actor
choose and change type of parameter to .Preferences script Text
Now you can see a Python code displayed in several lines. Some remarks here:

Python is a dynamic language, so no typecasting takes place,
Do not declare any constructor.
You only need to fill the fire() method.
You can assume that the configured ports are already instantiated (ie. you can use names and to work within out
actor's ports)

import ptolemy.data

class Main:
 def fire(self):
 # read value of input token
 val = self.in.get(0).intValue()
 self.out.send(0, ptolemy.data.IntToken(val))
 return

You can now instantiate Constant actor. Set its to 1 and to 4. Connect it with port offiringCountLimit value in
PythonScript.
Instantiate also a Display actor and connect PythonScript's with it.out
Finally add an SDF actor and execute the workflow.

You will see 4 in the Display window. Now you can change the input value 4 to some other one. Or you can change
the actor source code to execute a different task.
Please save this workflow as . The next exercises will depend on it.$HOME/python_script.xml

1.
2.

3.

4.

5.

4. Creating a loop using PythonScript actor

After this exercise you will:

know how to create a generic loop using PythonScript actor

Exercise no. 2 (approx. 10 minutes)

In this exercise you will create a simple loop in Python and put it inside a special Kepler actor. You can find this workflow at
following location:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/python/python_loop_script.xml

In order to this follow the instructions:

Assuming you have finished the previous exercise, please load the workflow with basic Python actor.
In this exercise you will learn how to loop and create arrays using Python programming language. Let's assume a
following problem to solve. The actor receives a number which will be interpreted as iteration count. In each i-th
iteration, the actor will output . Example: = 4, = {0, 1, 4, 9}.i2 in out
In Python, the following script will do this:

import ptolemy.data

class Main:
 def fire(self):
 # read value of input token
 val = self.in.get(0).intValue()
 arr = []
 for i in range(val):
 # create a new IntToken with each value
 arr.append(ptolemy.data.IntToken(i**2))
 # send an ArrayToken with array of values
 self.out.send(0, ptolemy.data.ArrayToken(arr))
 return

Execute the workflow.

You will see {0, 1, 4, 9}. Now you can change the input value 4 to some other one. Or you can change the actor source
code to execute a different task.

5. An advanced loop using PythonScript actor

After this exercise you will:

know how to create advanced Kepler actors by incorporating simple yet powerful Python code inside it

Exercise no. 3 (approx. 10 minutes)

1.
2.

3.
a.
b.
c.

4.

5.

6.
7.

8.

In this exercise you will create an advanced loop in Python which will parse an array token. You can find this workflow at
following location:

$HOME/serpens/demo-ITM-09.2011/workflow/basic/python/python_advanced.xml

In order to this follow the instructions:

Assuming you have finished the first exercise, please load the workflow with basic Python actor.
In this exercise you will learn how to process an existing array. Let's assume you want to calculate some statistics from
numerical data: mean, median and standard deviation values.
You have to modify your existing PythonScript actor ports (right click on actor -> Configure ports):

Delete portout
Add , and input portsmean median stddev
Set their field to Type double

The following script will calculate desired values:

import ptolemy.data.DoubleToken

class Main:
 def fire(self):
 # parse input array token
 token = self.in.get(0)
 array = list()
 for i in range(token.length()):
 value = token.getElement(i)
 array.append(value.doubleValue())

 # calculate mean
 size = len(array)
 mean = sum(array)/size

 # get median
 array.sort()
 if size % 2 == 0:
 median = (array[size/2 - 1] + array[size/2])/2.0
 else:
 median = array[size/2]

 # calculate standard deviation
 stddev = 0
 for value in array:
 stddev = (value - mean)*(value - mean)
 stddev /= size

 # send results to output ports
 self.mean.send(0, ptolemy.data.DoubleToken(mean))
 self.median.send(0, ptolemy.data.DoubleToken(median))
 self.stddev.send(0, ptolemy.data.DoubleToken(stddev))

In the workflow, please set the initial Constant actor value to { } or any other numerical4, 9, 5, 5, 7, 4, 4, 2
array.
Connect all three output ports to the Display actor.
Execute the workflow.

You will see three lines with our calculated values. If you followed the tutorial steps exactly, and put the same initial
value to the Constant actor, then you should see:

5.0
4.5
2.0

3. Tutorial - Using FC2K with Fortran, C++ (Garching 09.2011)

Using FC2K with Fortran, C++ codes

Table of Contents

Using FC2K with Fortran, C++ codes
1. Introduction
2. Requirements for the tutorial

2.1 Using ITM Kepler installation at Gateway
3. Incorporating simple Fortran/C++ codes into Kepler using FC2K

3.1 Fortran code within Kepler
3.2 C++ code within Kepler

4. Fortran UAL example
5. Data visualization within Kepler using demux actor

Please update your installation

Please execute following commands within your terminal window

cp ~owsiak/public/itmdb/itm_trees/test/4.09a/mdsplus/0/* ~/public/itmdb/itm_trees/test/4.09a/mdsplus/0
cp -r ~owsiak/public/garching-09.2011/ISE ~/public/garching-09.2011/

1. Introduction

This tutorial is designed to introduce the concept of using FC2K tool in order to build Kepler compatible actors.

FC2K is a tool for wrapping a Fortran or C++ source code into a Kepler actor. Before using it, your physics code should be ITM-compliant
(i.e. use CPOs as input/output). After running the ITMv1 script (to properly set up the environment variables), FC2K can be run simply by
typing fc2k in the Linux command line. FC2K was developed by ISIP in Java/Python. You can find more regarding FC2K at following .location

Kepler is a workflow engine and design platform for analyzing and modeling scientific data. Kepler provides a graphical interface and a library
of pre-defined components to enable users to construct scientific workflows which can undertake a wide range of functionality. It is primarily
designed to access, analyse, and visualise scientific data but can be used to construct whole programs or run pre-existing simulation codes.

Kepler builds upon the mature Ptolemy II framework, developed at the University of California, Berkeley. Kepler itself is developed and
maintained by the cross-project Kepler collaboration.

The main components in a Kepler workflow are actors, which are used in a design (inherited from Ptolemy II) that separates workflow
components ("actors") from workflow orchestration ("directors"), making components more easily reusable. Workflows can work at very levels
of granularity, from low-level workflows (that explicitly move data around or start and monitor remote jobs, for example) to high-level
workflows that interlink complex steps/actors. Actors can be reused to construct more complex actors enabling complex functionality to be
encapsulated in easy to use packages. A wide range of actors are available for use and reuse.

NX connection to the Gateway

This tutorial assumes that Gateway accounts will be used for starting up Kepler application.
If you are not familiar with NX setup for the Gateway, take a look at following location NX setup

2. Requirements for the tutorial

Backing up Kepler home directory

Before you proceed with installation of the Kepler application be sure to make a backup of your Kepler home directory

mv ~/.kepler ~/.kepler_12_09_2011
mv ~/kepler ~/kepler_12_09_2011
mv ~/serpens ~/serpens_12_09_2011

https://www.efda-itm.eu/~wwwimp3/TEST/ITM/html/isip_fc2k.html
https://kepler-project.org/

1.
2.

2.1 Using ITM Kepler installation at Gateway

In order to make Kepler installation for the tutorial faster we will use preinstalled version of the Kepler that is available for Gateway users.

In order to install Kepler and ITM example workflow you have to follow instructions at following page:

Kepler installation

Kepler installation steps

After you follow all the installation steps, you should see Kepler loading.

Starting Kepler

No matter which way have you used to install Kepler, make sure to export some variables before you start Kepler again.

setenv JAVA_HOME /usr/java/latest
setenv KEPLER ~/kepler
kepler

3. Incorporating simple Fortran/C++ codes into Kepler using FC2K

In this part of the tutorial you will learn how to incorporate Fortran and C++ codes into Kepler. I will discuss two examples:

Simple Fortran code that will be incorporated into Kepler via FC2K tool - multiplying input value by two
Simple C++ code that will be incorporated into Kepler via FC2K tool - adding one to input value

3.1 Fortran code within Kepler

After this exercise you will:

know how to prepare Fortran codes for FC2K
know how to prepare Fortran library
know how set up Makefile
know how start and configure FC2K tool

Exercise no. 1 (approx. 30 min)

In this exercise you will execute simple Fortran code within Kepler. In order to this follow the instructions:

1. Get familiar with codes that will be incorporated into Kepler

Go to Code Camp related materials within your home directory

cd ~/public/garching-09.2011/FC2K/nocpo_example_1

You can find there various files. Pay particular attention to following ones:

nocpo.f90 - Fortran source code that will be executed from Kepler
Makefile - makefile that allows to build library file
nocpo_fc2k.xml - parameters for FC2K application (NOTE! this file contains my own settings, we will modify them
during tutorial)
nocpo.xml - example workflow

2. Build the code by issuing

make clean
make

Codes are ready to be used within FC2K

3. Prepare environment for FC2K

Make sure that all required system settings are correctly set

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null

4. Start FC2K application

This is as simple as typing from terminalfc2k

fc2k

After a while, you should see FC2K's main window

Default settings

Note, that your settings will be slightly different. Your location should point to a valid path for yourKepler
account.

5. Open existing parameters settings

Choose and navigate to . Open file . YouFile -> Open ~/public/garching-09.2011/FC2K/nocpo_example_1 nocpo_fc2k.xml
should see new parameter settings loaded into FC2K.

6. Make sure that Kepler location is correct

After loading parameters you can notice that parameters point to locations within my home directory ().~owsiak

You should modify these setting, so they point to locations within you home directory. They will typically be as follows:

$HOME/kepler

7. Make sure that location is correctlibrary

After loading parameters you can notice that library location points to location within my home directory ().~owsiak

You should modify this location, so it points to location of the library within your public directory. It should point to:

~/public/garching-09.2011/FC2K/nocpo_example_1/libnocpo.a

8. After all the settings are correct, you can generate actor

Simply press "Generate" button and wait till FC2K finishes the generation.

Generating an actor for the second time

This tutorial assumes that Gateway accounts will be used for starting up Kepler application.
If you are not familiar with NX setup for the Gateway, take a look at following location NX setup

9. Confirm Kepler compilation

After actor is generated, FC2K offers to compile Kepler application. Make sure to compile it by pressing "Yes".

10. You can now start Kepler and use generated actor

Open new terminal window and make sure that all environment settings are correctly set and execute Kepler.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

After Kepler is started, open example workflow from the following location

~/public/garching-09.2011/FC2K/nocpo_example_1/nocpo.xml

You should see similar workflow on screen.

You can start it, by pressing "Play" button

After workflow finishes it's execution, you should see result similar to one below:

11. Exercise no. 1 finishes here.

3.2 C++ code within Kepler

After this exercise you will:

know how to prepare C++ codes for FC2K
know how to prepare C++ library
know how set up Makefile
know how start and configure FC2K tool

Exercise no. 2 (approx. 30 min)

In this exercise you will execute simple C++ code within Kepler. In order to do this follow the instructions:

1. Get familiar with codes that will be incorporated into Kepler

Go to Code Camp related materials within your home directory

cd ~/public/garching-09.2011/FC2K/simplecppactor

You can find there various files. Pay particular attention to following ones:

simplecppactor.cpp - C++ source code that will be executed from Kepler
Makefile - makefile that allows to build library file
simplecppactor_fc2k.xml - parameters for FC2K application (NOTE! this file contains my own settings, we will modify
them during tutorial)
simplecppactor_workflow.xml - example workflow

2. Build the code by issuing

make clean
make

Codes are ready to be used within FC2K

3. Prepare environment for FC2K

Make sure that all required system settings are correctly set

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null

4. Start FC2K application

This is as simple as typing from terminalfc2k

fc2k

After a while, you should see FC2K's main window

Default settings

Note, that your settings will be slightly different. Your location should point to a valid path for yourKepler
account.

5. Open existing parameters settings

Choose and navigate to . Open file File -> Open ~/public/garching-09.2011/FC2K/simplecppactor
. You should see new parameter settings loaded into FC2K.simplecppactor_fc2k.xml

6. Make sure that Kepler location is correct

After loading parameters you can notice that parameters point to locations within my home directory ().~owsiak

You should modify these setting, so they point to locations within you home directory. They will typically be as follows:

$HOME/kepler

7. Make sure that location is correctlibrary

After loading parameters you can notice that library location points to location within my home directory ().~owsiak

You should modify this location, so it points to location of the library within your public directory. It should point to:

~/public/garching_09.2011/FC2K/simplecppactor/libsimplecppactor.a

8. After all the settings are correct, you can generate actor

Simply press "Generate" button and wait till FC2K finishes the generation.

Generating an actor for the second time

This tutorial assumes that Gateway accounts will be used for starting up Kepler application.
If you are not familiar with NX setup for the Gateway, take a look at following location NX setup

9. Confirm Kepler compilation

After actor is generated, FC2K offers to compile Kepler application. Make sure to compile it by pressing "Yes".

10. You can now start Kepler and use generated actor

Open new terminal window and make sure that all environment settings are correctly set and execute Kepler.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

After Kepler is started, open example workflow from the following location

~/public/garching-09.2011/FC2K/simplecppactor/simplecppactor_workflow.xml

You should see similar workflow on screen.

You can start it, by pressing "Play" button

After workflow finishes it's execution, you should see result similar to one below:

11. Exercise no. 2 finishes here.

4. Fortran UAL example

After this exercise you will:

know how to prepare Fortran codes that use UAL
know how to prepare Fortran based library that uses UAL
know how set up Makefile
know how start and configure FC2K tool

Exercise no. 3 (approx. 30 min)

In this exercise you will execute simple Fortran code that uses UAL. Code will be incorporated into Kepler. In order to do this
follow the instructions:

1. Get familiar with codes that will be incorporated into Kepler

Go to Code Camp related materials within your home directory

cd ~/public/garching-09.2011/FC2K/coreprof2mhd

You can find there various files. Pay particular attention to following ones:

coreprof2mhd.f90 - Fortran source code that will be executed from Kepler - this code uses UAL
Makefile - makefile that allows to build library file
cposlice2cposlicef_fc2k.xml - parameters for FC2K application (NOTE! this file contains my own settings, we will
modify them during tutorial)
cposlice2cposlicef_kepler.xml - example workflow

2. Build the code by issuing

make clean
make

Codes are ready to be used within FC2K

3. Prepare environment for FC2K

Make sure that all required system settings are correctly set

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null

4. Start FC2K application

This is as simple as typing from terminalfc2k

fc2k

After a while, you should see FC2K's main window

Default settings

Note, that your settings will be slightly different. Your location should point to a valid path for yourKepler
account.

5. Open existing parameters settings

Choose and navigate to . Open file File -> Open ~/public/garching-09.2011/FC2K/coreprof2mhd
. You should see new parameter settings loaded into FC2K.cposlice2cposlicef_fc2k.xml

6. Make sure that Kepler location is correct

After loading parameters you can notice that parameters point to locations within my home directory ().~owsiak

You should modify these setting, so they point to locations within you home directory. They will typically be as follows:

$HOME/kepler

7. Make sure that location is correctlibrary

After loading parameters you can notice that library location points to location within my home directory ().~owsiak

You should modify this location, so it points to location of the library within your public directory. It should point to:

~/public/garching-09.2011/FC2K/coreprof2mhd/libcpo2cpof.a

8. After all the settings are correct, you can generate actor

Simply press "Generate" button and wait till FC2K finishes the generation.

Generating an actor for the second time

This tutorial assumes that Gateway accounts will be used for starting up Kepler application.
If you are not familiar with NX setup for the Gateway, take a look at following location NX setup

9. Confirm Kepler compilation

After actor is generated, FC2K offers to compile Kepler application. Make sure to compile it by pressing "Yes".

10. You can now start Kepler and use generated actor

Open new terminal window and make sure that all environment settings are correctly set and execute Kepler.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

After Kepler is started, open example workflow from the following location

~/public/garching-09.2011/FC2K/coreprof2mhd/cposlice2cposlicef_kepler.xml

You should see similar workflow on screen.

You can start it, by pressing "Play" button

After workflow finishes it's execution, you should see result similar to one below:

11. Exercise no. 3 finishes here.

5. Data visualization within Kepler using demux actor

After this exercise you will:

know how to use demux actor
know how to visualize data using Kepler actors

Exercise no. 4 (approx. 30 min)

In this exercise you will execute simple Kepler workflow that uses demux actor.

1. Prepare input data

In order to use the actor, you have to create data set. This can be done using script. Make sure that ITM scriptput_cpo.py
was executed and start put_cpo.py

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
cd ~/public/garching-09.2011/visualization
python put_cpo.py

2. Start Kepler application

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

3. Open example workflow

Choose and open following file:File -> Open File

~/public/garching-09.2011/visualization/visu-python-demux.xml

You should see workflow similar to one below:

Execute workflow by pressing "Play" button:

After workflow is finished, you should see image similar to one below:

4. Exercise no. 4 finishes here.

cp ~owsiak/public/itmdb/itm_trees/test/4.09a/mdsplus/0/* ~/public/itmdb/itm_trees/test/4.09a/mdsplus/0

4.1 Tutorial - ISE - visualizing data (Garching 09.2011)

Table of contents

Table of contents
Integrated Simulation Editor

1. Starting editor
2. Adding example data
3. Browsing the data

Video

There is a Video material related to this section: , movie movie (for Safari browser)

Integrated Simulation Editor

Integrated Simulation Editor is available to Gateway users via command. It allows to:ise

Visualize and edit the values of a simulation in the current database
Associate the dataset with a Kepler worflow
Run Kepler within ISE
Follow the evolution of some parameters during the execution of the workflow
Display the results with Matlab or Scilab

However, it has few restrictions:

http://scilla.man.poznan.pl/euforia/movies/movie_ise_1.html
http://scilla.man.poznan.pl/euforia/movies/movie_ise_1_safari.html

Visualize only 1D and 2D data
ISE not useful for huge simulations

(source: Introduction to ISE by J. Signoret and P. Huynh)

In this tutorial section you will get familiar with basic features of ISE.

1. Starting editor

In order to start ISE you have to make sure that:

database structure was created for your account
you have executed ITMv1 script

If you want to start ISE, follow the instruction below:

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null

echo "Creating database structure is required only in case you haven't done it before"
/afs/efda-itm.eu/project/switm/scripts/create_user_itm_dir test 4.09a

ise

After a while, you should see ISE main window.

2. Adding example data

In this tutorial we will base on private data from 4.09a database. We will use following import settings:

Shot: 12
Run: 2
[x] Copy data from another set
Shot: 12
Run: 1
User: signoret
Source: private

In order to import data, you have to choose: File -> New. You should see window similar to this one:

You should see the same window as shown at the picture and press Create

Machine Ref.

If you don't see "test" at the list of machine names simply click the Combo Box and type it in for yourself: , movie movie (for
Safari browser)

After a while, data will be imported. You can see data tree on the left panel, by pressing All

3. Browsing the data

With ISE, you can visual data nodes by choosing particular node and entering mode. In this example we will visualize node:Edit

http://scilla.man.poznan.pl/euforia/movies/movie_ise_2.html
http://scilla.man.poznan.pl/euforia/movies/movie_ise_2_safari.html
http://scilla.man.poznan.pl/euforia/movies/movie_ise_2_safari.html

Node name

magdiag/bpol_probes/measure/value

Select this node, by choosing: Tree Data Views and navigate to node: . You should end up withmagdiag/bpol_probes/measure/value
situation like this:

Right-click node "value" and choose "Edit" item from the context menu.

This particular node will be visualized. You can either view data in numeric form:

Or visualize them.

4.2 Tutorial - ISE - executing Kepler workflows (Garching 09.2011)

Table of contents

Table of contents
Integrated Simulation Editor - executing Kepler workflows

1. Starting editor
2. Adding example data
3. Monitoring values
4. Enabling Monitoring Dialog
5. Loading workflow
6. Modification of parameters

7. Modyfing actor's parameters
8. Starting the workflow

Integrated Simulation Editor - executing Kepler workflows

Integrated Simulation Editor is available to Gateway users via command. It allows to:ise

Run Kepler within ISE
Follow the evolution of some parameters during the execution of the workflow
Display the results with Matlab or Scilab

(source: Introduction to ISE by J. Signoret and P. Huynh)

In this tutorial section you will get familiar with execution of Kepler workflows from ISE.

1. Starting editor

In order to start ISE you have to make sure that:

database structure was created for your account
you have executed ITMv1 script
you have imported actors used during tutorial

If you want to start ISE, follow the instruction below:

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null

echo "Creating database structure is required only in case you haven't done it before"
/afs/efda-itm.eu/project/switm/scripts/create_user_itm_dir test 4.09a

cd ~/public/garching-09.2011/ISE/actors

import_actor checktearing
import_actor equil2toroidfieldf
import_actor ntmDeff
import_actor ntmmodule

ise

After a while, you should see ISE main window.

2. Adding example data

In this tutorial we will base on private data from 4.09a database. We will use following import settings:

Shot: 12
Run: 2
[x] Copy data from another set
Shot: 12
Run: 1
User: signoret
Source: private

In order to import data, you have to choose: File -> New. You should see window similar to this one:

You should see the same window as shown at the picture and press Create

Machine Ref.

If you don't see "test" at the list of machine names simply click the Combo Box and type it in for yourself: , movie movie (for
Safari browser)

After a while, data will be imported. You can see data tree on the left panel, by pressing All

http://scilla.man.poznan.pl/euforia/movies/movie_ise_2.html
http://scilla.man.poznan.pl/euforia/movies/movie_ise_2_safari.html
http://scilla.man.poznan.pl/euforia/movies/movie_ise_2_safari.html

3. Monitoring values

Values for the loaded data can be monitored during workflow execution. In case of this, demo, workflow we will monitor value of:
 node.toroidfield/torofield[0]/bvac_r/value

In order to add this node into Monitoring choose the node, right click it and select "Add data to monitoring"

4. Enabling Monitoring Dialog

Monitoring Dialog can be easily enabled via option at menu bar: "Show/Hide Monitoring"

After you choose this option, you will notice Monitoring Dialog floating above the ISE's window

5. Loading workflow

With ISE, you can bind the workflow to a study. In order to do so, choose: and navigate to:Data->Select Kepler Workflow

~/public/garching-09.2011/ISE/demo_ntm+toroidfield.xml

Select the file and load it. After file is loaded you should be able to see the workflow within tab.Workflow

Editing parameters

ISE allows to change workflow's parameters (). However, you have to stick to a naming convention. Parametersblue dots
must comply to following naming schema:

parameterprefix_in

6. Modification of parameters

In case of this study, we will modify value of parameter - it is mandatory to change it's value to "0.005". Select the parameterdelta_phys_in
and choose: Edit

After Editor window opens, set the value of parameter to "0.005"

7. Modyfing actor's parameters

ISE allows you to modify actor's parameter as well. You can do this by selecting an actor and choosing from the context menu. In thisEdit
example, we will examine the values of actor. Select the actor, right-click on it, and choose " "checktearing Edit

After the moment, dialog window should appear. This dialog allows you to modify actor's parameters directly from ISE.

8. Starting the workflow

At this point, all the parameters are correctly set, data are loaded, workflow is bound to the study. We can start it by pressing "Play" button at
the top of the screen

Save the study

Before starting the workflow, ISE will ask whether study should be saved. It is good a habit to save the study before starting
the workflow. This way, you can easily go back to once configured settings.

After some time, you should see the result of execution.

5. Tutorial - HPC2K (Garching 09.2011)

HPC2K

Table of Contents

HPC2K
1. Introduction
2. Requirements for the tutorial

2.1 Using ITM Kepler installation at Gateway
3. VOMS proxy
4. HPC2K

4.1 Submitting an HPC job
4.2 Interactive HPC use case
4.3 Submitting a grid job

1. Introduction

This tutorial is designed to introduce the concept of building ITM tools based workflows within Kepler.

Kepler is a workflow engine and design platform for analyzing and modeling scientific data. Kepler provides a graphical interface and a library
of pre-defined components to enable users to construct scientific workflows which can undertake a wide range of functionality. It is primarily
designed to access, analyse, and visualise scientific data but can be used to construct whole programs or run pre-existing simulation codes.

Kepler builds upon the mature Ptolemy II framework, developed at the University of California, Berkeley. Kepler itself is developed and
maintained by the cross-project Kepler collaboration.

The main components in a Kepler workflow are actors, which are used in a design (inherited from Ptolemy II) that separates workflow
components ("actors") from workflow orchestration ("directors"), making components more easily reusable. Workflows can work at very levels
of granularity, from low-level workflows (that explicitly move data around or start and monitor remote jobs, for example) to high-level
workflows that interlink complex steps/actors. Actors can be reused to construct more complex actors enabling complex functionality to be
encapsulated in easy to use packages. A wide range of actors are available for use and reuse.

https://kepler-project.org/

NX connection to the Gateway

This tutorial assumes that Gateway accounts will be used for starting up Kepler application.
If you are not familiar with NX setup for the Gateway, take a look at following location NX setup

2. Requirements for the tutorial

Backing up Kepler home directory

Before you proceed with installation of the Kepler application be sure to make a backup of your Kepler home directory

mv ~/.kepler ~/.kepler_09_2011
mv ~/kepler ~/kepler_09_2011
mv ~/serpens ~/serpens_09_2011

2.1 Using ITM Kepler installation at Gateway

In order to make Kepler installation for the tutorial faster we will use preinstalled version of the Kepler that is available for Gateway users.

In order to install Kepler and ITM example workflow you have to follow instructions at following page:

Kepler installation

1. Kepler installation at Gateway (Garching 09.2011)

After you follow all the installation steps, you should see Kepler loading.

Starting Kepler

No matter which way have you used to install Kepler, make sure to export some variables before you start Kepler again.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

3. VOMS proxy

Your certificate and key

Certificates and keys are preinstalled in . During this tutorial, you will be given an id.$HOME/serpens/core/cert/
Please execute:

cp ~/serpens/core/cert/POZNAN##-cert.pem ~/usercert.pem
cp ~/serpens/core/cert/POZNAN##-key.pem ~/userkey.pem

4. HPC2K

HPC2K is a tool designed to create a Kepler actor which:

uploads the input files,
submits the job,
gets its status,
downloads the output files.

The job can be either run on an High Performance Computer (HPC) or in a grid (distributed computing environment). The job is based on
user code (Fortran or C++) which accesses the CPO data through the UAL. This way, once your code is CPO-compatible, you can easily
generate Kepler actors which will run this code on HPC or grid computing environments.

This "single actor for single code" solution allows you to design complex workflows with sophisticated dependencies between components.
This concept is shown on the following diagram:

Furthermore, in the workflow you have to use only the CPO name, shot/run number, username and tokamak name. The CPOs themselves
are not copied and spread through the workflow structure. Only the last components - the computing nodes - access the CPOs addresses
earlier.

The HPC2K user interface is divided into two tabs:

4.1 Submitting an HPC job

For the purpose of tutorial, we will run a simple code reading a CPO and sending a single integer to the output.

Exercise 1

1.

2.

3.

Get the example code from the prepared location:

Contents of the example

$HOME/cpo2ipHPC/cpo2ip.f90

subroutine cpo2ip(equi_in, ip)
!------------------------------------
 use euitm_schemas
 use euITM_routines
 implicit none
 integer,parameter :: DP=kind(1.0D0)
 type (type_equilibrium),pointer :: equi_in(:)
 integer :: ip

 write(*,*) ' cpo2ip: in the computation routine '
 write(*,*) 'time deb',equi_in(:)%time,size(equi_in)
 call flush(6)
 ip=23
 return

end subroutine cpo2ip

$HOME/cpo2ipHPC/Makefile

MAKEFILE FORTRAN 90 FOR cpo2ip

F90=ifort
LIBSTDCPP=`g++ -print-file-name=libstdc++.so`
UAL= /lustre/jhome8/fsnaplm/fsaplm02/ual
OPTS = -g -O0 -assume no2underscore -fPIC -shared-intel
INCLUDES = -I$(UAL)/include/amd64_ifort
LIBS = -L$(UAL)/lib -lpthread $(LIBSTDCPP) -lrt
-lUALFORTRANInterface_ifort

all: cpo2ip.o libcpo2ip.a

OBJ_INTERPOL= cpo2ip.o

COMPILATION

cpo2ip.o: cpo2ip.f90
 $(F90) $(OPTS) -c -o $@ $^ ${INCLUDES} $(LIBS)

libcpo2ip.a: $(OBJ_INTERPOL)
 ar -rv libcpo2ip.a cpo2ip.o

The code is already precompiled on and in the directory you can find HPC-FF cpo2ipHPC
. Please remember that in order to submit an HPC job basing on HPC2K tool, you willlibcpo2ip.a

have to compile the codes on target machine and copy the generated library back to your local
computer (i.e. the one running Kepler).

Run HPC2K.

cd $HOME
hpc2k-hpc/actors/install $HOME/kepler
source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a
>/dev/null
setenv HPC2K $HOME/hpc2k-hpc
hpc2k-hpc/hpc2k

Load the predefined configuration from via -> menu.~/cpo2ipHPC/cpo2ipHPC.xml File Open

http://www2.fz-juelich.de/jsc/juropa/

4.

5.
6.

7.

8.
9.

10.

11.

You have to change the following fields, so that they point to your directories:
Library in section.Actor Library
Kepler in section.Environment

Click on button. Upon successful generation agree to compile Kepler.Ok
Close HPC2K and open Kepler in the same terminal by executing:

kepler

Instantiate your newly created actor via -> menu. The classname is Tools Instantiate Component
eu.itm.GRID-HPC.cpo2ipHPC.cpo2ipHPC
Put , three actors, and three actors.DDF director Constant ualinit Display
Add an output port named to .equilibrium ualinit
Fill and connect all actors as shown on the screenshot below. Also, make sure that the have Constants Constants

 set to 1.fireCountLimit

Execute the workflow. You will be informed about following stages of execution up to the moment when job is
successfully finished and its produced output is displayed:

1.

2.
3.

4.
5.
6.

7.
8.

4.2 Interactive HPC use case

HPC workflows generated by HPC2K represent interactive jobs. After re-entering the composite actor, the job is not submitted again, so once
you have waited in the queue you can use the computation power directly. To demonstrate this, two codes have been prepared and the
workflow is designed such that their actions are repeated in the loop.

Exercise 2

Run HPC2K.

cd $HOME
hpc2k-hpc/actors/install $HOME/kepler
source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a
>/dev/null
setenv HPC2K $HOME/hpc2k-hpc
hpc2k-hpc/hpc2k

Load the predefined configuration from via -> menu.~/coreprof2mhd/coreprof2mhd.xml File Open
You have to change the following fields, so that they point to your directories:

Library in section.Actor Library
Kepler in section.Environment

Click on button. Upon successful generation agree to compile Kepler.Ok
Repeat steps 3-5 with the predefined configuration .~/coreprof2mhd/mhd2coreprof.xml
Close HPC2K and open Kepler in the same terminal by executing:

kepler

Load the workflow from via -> menu.~/coreprof2mhd/HPCRepeat.xml File Open
Execute the workflow. You will see the content of immediate MHD CPO data and can observe the changes done
remotely on HPC machine as shown on this screenshot:

8.

After the initial waiting time in the queue, two interactive jobs directly process the data sent to them from Kepler

8.

workflow. When the workflow is finished you will be presented with standard output and error from both jobs where you
can check that interactivity works correctly:

4.3 Submitting a grid job

We will run the same code as before, but this time on grid infrastructure.

1.

2.
3.

4.
5.

6.

7.

8.
9.

10.

11.

Exercise 3

Run HPC2K.

cd $HOME
hpc2k-grid/actors/install $HOME/kepler
source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a
>/dev/null
setenv HPC2K $HOME/hpc2k-grid
hpc2k-grid/hpc2k

Load the predefined configuration from via -> menu.~/cpo2ipGRID/cpo2ipGRID.xml File Open
You have to change the following fields, so that they point to your directories:

Library in section.Actor Library
Kepler in section.Environment

Click on button. Upon successful generation agree to compile Kepler.Ok
Close HPC2K and open Kepler in the same terminal by executing:

kepler

Before running the grid job, you have to create a proxy certificate. Please follow the instructions in . Set this guide vo
parameter to value and please store the proxy in your :gilda $HOME
Instantiate your newly created actor via -> menu. The classname is Tools Instantiate Component
eu.itm.GRID-HPC.cpo2ipGRID.cpo2ipGRID
Put , three actors, and three actors.DDF director Constant ualinit Display
Add an output port named to .equilibrium ualinit
Fill and connect all actors as shown on the screenshot below. Also, make sure that the have Constants Constants

 set to 1.fireCountLimit

Execute the workflow. You will be informed about following stages of execution up to the moment when job is
successfully finished and its produced output is displayed.

6. Tutorial - Parametric grid job submission (Garching 09.2011)

Parametric grid job submission

Table of Contents

Parametric grid job submission
1. Introduction
2. Requirements for the tutorial

2.1 Using ITM Kepler installation at Gateway
3. VOMS proxy
4. The template workflow

4.1 Job specification
4.2 Other parameters

5. Single job submission
6. Parametric job submission

6.1 Advanced control of parametric jobs
6.1.1 Jobs splitting
6.1.2 Additional queue checking

7. Real use case example

1. Introduction

This tutorial is designed to introduce the concept of building ITM tools based workflows within Kepler.

Kepler is a workflow engine and design platform for analyzing and modeling scientific data. Kepler provides a graphical interface and a library

https://kepler-project.org/

of pre-defined components to enable users to construct scientific workflows which can undertake a wide range of functionality. It is primarily
designed to access, analyse, and visualise scientific data but can be used to construct whole programs or run pre-existing simulation codes.

Kepler builds upon the mature Ptolemy II framework, developed at the University of California, Berkeley. Kepler itself is developed and
maintained by the cross-project Kepler collaboration.

The main components in a Kepler workflow are actors, which are used in a design (inherited from Ptolemy II) that separates workflow
components ("actors") from workflow orchestration ("directors"), making components more easily reusable. Workflows can work at very levels
of granularity, from low-level workflows (that explicitly move data around or start and monitor remote jobs, for example) to high-level
workflows that interlink complex steps/actors. Actors can be reused to construct more complex actors enabling complex functionality to be
encapsulated in easy to use packages. A wide range of actors are available for use and reuse.

NX connection to the Gateway

This tutorial assumes that Gateway accounts will be used for starting up Kepler application.
If you are not familiar with NX setup for the Gateway, take a look at following location NX setup

2. Requirements for the tutorial

Backing up Kepler home directory

Before you proceed with installation of the Kepler application be sure to make a backup of your Kepler home directory

mv ~/.kepler ~/.kepler_09_2011
mv ~/kepler ~/kepler_09_2011
mv ~/serpens ~/serpens_09_2011

2.1 Using ITM Kepler installation at Gateway

In order to make Kepler installation for the tutorial faster we will use preinstalled version of the Kepler that is available for Gateway users.

In order to install Kepler and ITM example workflow you have to follow instructions at following page:

Kepler installation

1. Kepler installation at Gateway (Garching 09.2011)

After you follow all the installation steps, you should see Kepler loading.

Starting Kepler

No matter which way have you used to install Kepler, make sure to export some variables before you start Kepler again.

source /afs/efda-itm.eu/project/switm/scripts/ITMv1 kepler test 4.09a >/dev/null
kepler

3. VOMS proxy

The first step is to create a proxy certificate. Please follow the instructions in . Set parameter to value .this guide vo gilda

4. The template workflow

In order to address various requirements of grid users from different fields of science, a single template workflow was created. This workflow
contains a set of parameters which define the job to be submitted and mechanisms of its management.

4.1 Job specification

The first section of parameters defines the job to be submitted. The most important are:

jobType: either (ie. single job) or (ie. multiple subjobs managed as a single entity),normal parametric
inputFiles: an array of paths to local files which will be uploaded into job's working directory,
outputFiles: an array of names of expected output files,
commandLine: a full command with arguments that will be run on a worker node.

Double check the *outputFiles* parameter

The template workflow tries to avoid failures or fix them if they occur. If the job is finished, but its output files are
unavailable, the job will be resubmitted. Please double check your array not to put there any misspelledoutputFiles
filename!

If your job cannot be defined by a single command, you will have to write all commands in a shell script, and set parameter tocommandLine
the script name eg.:

$HOME/script.sh

#! /bin/sh
ls -l
ps -e

Template workflow settings

commandLine: "/bin/sh script.sh"
inputFiles: {"$HOME/script.sh"}

4.2 Other parameters

The template workflow contains also a set of parameters which define its behaviour as a job manager:

isContinueLastJob: the template workflow stores the state of job execution in an internal database, so that you can choose to
continue your previous job even if Kepler stopped working,
customCE, , : you can force the usage of specified Computing Element (CE), Storage Element (SE) orcustomSE customWMS
Workload Management System (WMS).

During the exercises we will submit several jobs. To avoid unnecessary confusion it is recommended that you set to isContinueLastJob
. Then, each workflow run will always imply a new job submission which is what we need for educational purposes.false

The custom resources choice is a very useful tool, but needs to be used responsibly. If you submit hundreds or thousands of jobs and you
force all of them to use a single Workload Management System or even worse a single Computing Element, then the workload will be
extremely unbalanced.

5. Single job submission

After this exercise you will:

know how to run a single grid job

1.
2.
3.

4.

5.

6.

1.
2.

Exercise 1

Run Kepler.
Make sure you have a valid VOMS proxy.
Load template workflow from this location:

$HOME/serpens/core/workflow/grid/glite/template.xml

Set parameters according to the table below:

Parameter Value

jobType normal

inputFiles { }"$HOME/serpens/core/data/input.txt"

outputFiles { }"output.txt"

commandLine echo $(whoami) | cat input.txt - >output.txt

This will prove that:
the input.txt was successfully uploaded and available to the job,
it was read and a new line was added to it in the end,
the concatenated result was stored in a new file,
you can use nested execution , pipes and stream redirection in your command definition.$(...) | >

Execute the workflow. When the job is finished you will be informed about the location of downloaded output. Please
verify yourself if the command worked as expected.

6. Parametric job submission

Parametric jobs can be defined in two ways:

By giving a list of parameters.
By generating parameter values numerically.

In the first case, parameters can have any value and you have to specify them explicitly eg. {"1", "abc", "test"}. In the second case, you are
obliged to provide three generator parameters: start, step and limit eg. for given , , the parameters will bestart = 1 step = 2 limit = 9
set to {"1", "3", "5", "7"}.

When you submit a parametric job, the Workload Management System launches multiple subjobs at the same time. Each subjob is
separated from others, has its own copy of input files and has its own parameter value. To access this parameter value, you must use a
special reserved keyword . You can use it in your command specification. For example, a command with_PARAM_ echo _PARAM_
parameter list set to {"1", "abc", "test"} will run three subjobs. Each of them will create a standard output file with its parameter value.

For the next exercise, let's choose a problem which is suitable for parametric job. We will submit several subjobs, where each of them will
produce its own output depending on the parameter value. We will choose the numeric generation of parameters and factorial calculation as
a grid job.

After this exercise you will:

know how to run a parametric grid job

1.
2.
3.

4.

5.

6.

Exercise 2

Run Kepler.
Make sure you have a valid VOMS proxy.
Load template workflow from this location:

$HOME/serpens/core/workflow/grid/glite/template.xml

Set parameters according to the table below:

Parameter Value

jobType parametric

parametricType numeric

parametersStart 1

parametersStep 1

parametersLimit 10

inputFiles { }"$HOME/serpens/core/data/factorial.sh"

outputFiles {}

commandLine /bin/sh factorial.sh _PARAM_

This will do the following:
submit nine subjobs,
each subjob will calculate a factorial for its parameter value,
each subjob will be managed separately - if any fails, it will be resubmitted, if any finishes, it will be checked
and its output will be downloaded.

Execute the workflow. When any of the subjobs is finished you will be informed about the location of downloaded
output. Each subjob will have a separate output directory named after its parameter value eg. for parameter 4, the
output should be 24.

6.1 Advanced control of parametric jobs

6.1.1 Jobs splitting

When you submit a parametric job, its ID holds information about all its subjobs. There is no formal constraint on the number of subjobs ie.
you can set , and to arbitrarily high values yielding hundreds or thousands of job.parametersStart parametersStep parametersLimit
However, there is a technical limitation of servers, network bandwidth, etc.

To bypass this problem, the template workflow seamlessly splits your parametric jobs. From the user point of view, this is indistinguishable
from normal parametric job submission. Everything takes place in the background of workflow execution. There is a parameter splitNumber
which is responsible for the splitting mechanism. The default value of 50 means that if you submit for example 140 jobs, they will be split in
the background into 50, 50, 40 groups. You can change the to obtain different grouping.splitNumber

1.
2.
3.

4.

5.

6.

Exercise 3

Run Kepler.
Make sure you have a valid VOMS proxy.
Load template workflow from this location:

$HOME/serpens/core/workflow/grid/glite/template.xml

Set parameters according to the table below:

Parameter Value

jobType parametric

parametricType numeric

parametersStart 1

parametersStep 1

parametersLimit 10

inputFiles {}

outputFiles {}

commandLine echo _PARAM_

splitNumber 4

This will do the following:
submit nine subjobs,
workflow will show them as a single entity (9 separate jobs),
however in the background there will be three parametric jobs submitted grouped like this: 4, 4, 1

Execute the workflow.

6.1.2 Additional queue checking

From time to time it may happen that the Workload Management System or Logging and Bookkeeping service are malfunctioning. They will

1.
2.

3.

accept the job, but fail to update its status, enqueue/dequeue it properly or communicate with Computing Element. Or it could happen that
the information services are inaccurate and your job ends in a days-long queue , despite other computing nodes being unused.

One aid for this problem is the aforementioned custom resource choice via , or parameters. For largecustomCE customSE customWMS
parametric jobs, this can on the contrary overload a single resource very quickly leading to even worse situation.

Thus an additional queue checking mechanism have been introduced. Each of the managed subjobs is having its state stored in a local
database. Its state consists of its job status and the time it first came up. This way, the template workflow can periodically check for jobs
queue dynamics and intervene if abnormal situation occurs.

The following diagram shows job lifetime. The problems described in the the first paragraph manifest themselves in the following:

Job stays in a READY state forever if WMS/LB is broken.
Job stays in a SCHEDULED state for a very long time (days, weeks) if the information services failed or CE administrator has a
hidden queue policy.
Job stays in a RUNNING state for abnormal long time if WMS/LB is broken. This one however is not so straightforward, because it
could be that the application is stuck in an infinite loop, so please double check your application before assuming the infrastructure
has failed.

The three statuses mentioned above are the three vulnerable points if there is a problem with the infrastructure. Thus, the template workflow
periodically checks for these indicators of problems. There are three main parameters defining this mechanism behaviour:

allowedReady: time that the job is allowed to be in READY state, by default set to one hour,
allowedScheduled: time that the job is allowed to be in SCHEDULED state, by default set to eight hours,
allowedRunning: time that the job is allowed to be in RUNNING state, by default set to twelve hours.

While the job being in READY state for long is a clear indicator of problem (thus the low limit of one hour), the situation with
SCHEDULED and RUNNING is not so simple. If your job requirements are very specific and there are only few computing
nodes that can fulfill them, it is very likely that your job will stay in a queue (SCHEDULED state) for a very long time, in
which case it is not a problem of infrastructure. Also if your job is very time-consuming, the twelve hour threshold can also
be insufficient and can lead to false alarms. Please be very considerate when tweaking these parameters!

The additional queue checking can be time- and resource-expensive. To avoid resource overuse in short time, these checks are not carried
out on all of the subjobs at once. There is a parameter, by default set to ten minutes, which will randomize jobs checks.dispersion

7. Real use case example

Template workflow despite being heavily configurable allows to interchange its components to produce really complex solutions. With
Christian Konz, we have developed together a HELENA-JALPHA-ILSA solution which can be schematically described as in this diagram:

In fact, most of the tasks here are already done by the template workflow. The first loop checking the status, resubmission upon failure and
output downloading are already incorporated inside the workflow. What we added specifically for HELENA-JALPHA-ILSA use case was the
input generator and another job submission in the end of the cycle. This way once HELENA is successfully finished, then the inputs are

prepared and a parameter scan is initiated for JALPHA-ILSA. Later, the same scheme is used for each subjob - it is checked, resubmitted
upon failure and its outputs are downloaded after successful finish. In the end, the results are visualized.

Technically speaking, preparation of this real and complex use case consisted of:

joining together two template workflows (one for HELENA, one for JALPHA-ILSA),
editing some of the workflows components to conform to the general use case.

You can watch a movie from this use case run here: http://scilla.man.poznan.pl/euforia/movies/helena-jalpha-ilsa.html

http://scilla.man.poznan.pl/euforia/movies/helena-jalpha-ilsa.html

	Training - Garching 09.2011
	1. Kepler installation at Gateway (Garching 09.2011)
	2. Tutorial - Introduction to Kepler (Garching 09.2011)
	1. Tutorial - Introduction to Kepler - Basics (Garching 09.2011)
	2. Tutorial - Introduction to Kepler - Loops (Garching 09.2011)
	3. Tutorial - Introduction to Kepler - Python (Garching 09.2011)

	3. Tutorial - Using FC2K with Fortran, C++ (Garching 09.2011)
	4.1 Tutorial - ISE - visualizing data (Garching 09.2011)
	4.2 Tutorial - ISE - executing Kepler workflows (Garching 09.2011)
	5. Tutorial - HPC2K (Garching 09.2011)
	6. Tutorial - Parametric grid job submission (Garching 09.2011)

