

ITM General Meeting 2010 Lisbon, September 13-15, 2010

Task Force INTEGRATED TOKAMAK MODELLING

> Hybrid MHD-Gyrokinetic codes for studying the mutual nonlinear interaction of shear Alfvén modes and energetic particles

> > Presented by G. Vlad

on behalf of S. Briguglio, C. Di Troia, G. Fogaccia, F. Zonca Associazione Euratom-ENEA sulla Fusione, Frascati

> TF Leader : P. Strand, Deputies: R. Coelho, L-G. Eriksson, G. Falchetto

> > EFDA CSU Contact Person: D. Kalupin

•WP10-ITM-IMP5-ACT5: HMGC

Task Force

- -Status and recent developments of HMGC:
 - Routinely runs on the Gateway as a stand-alone module
 - Description of initial fast particle distribution function in the space of constant of motion
 - The new version of HMGC can have two species of kinetic particles with different (anisotropic) initial distribution functions (e.g., slowing down (NBI, alphas) and bi-Maxwellian (ICRH))
 - Added thermal ion compressibility and diamagnetic effects in addition to EP kinetic behaviours (eXtended HMGC, XHMGC)
- -Deliverables before end 2010:
 - A simple interface to equilibrium CPOs

• WP10-ITM-IMP5-ACT5: HYMAGYC

The new Frascati hybrid MHD-Gyrokinetic code, HYMAGYC:

• Thermal (core) plasma:

INTEGRATED TOKAMAK MODELLING

- described by full, resistive MHD linear equations
- e.m. potentials required by Gyrokinetic module: A, ϕ
- Fluid nonlinearities will not be retained

Task Force

- Energetic-ion population:
 - particle gyrocenter-coordinates are evolved by solving gyrokinetic eqs. up to order $O(\varepsilon^2)$ and $O(\varepsilon\varepsilon_B)$
 - perturbed quantities satisfy the nonlinear gyrokinetic ordering of Frieman-Chen, Phys. Fluids (1982) 23, 502 $\omega/\Omega_{\rm E} \approx k_{\parallel}\rho_{\rm E} = O(\varepsilon), \qquad k_{\perp}\rho_{\rm E} = O(1)$ (with $\Omega_{\rm E}$ the Larmor frequency and k_{\parallel} the component of the wave vector parallel to the magnetic field)
 - returns energetic particles pressure tensor Π^{ij} computed in terms of the particle distribution function in gyrocenter coordinates
- Flux coordinates system (s, χ, φ)

EFDA Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING WP10-ITM-IMP5-ACT5: HYMAGYC

- WP10-ITM-IMP5-ACT5: HYMAGYC
 - parallelization with a OpenMP (inter-node) + MPI (intra-node) scheme
 - run as standalone program on the Gateway
 - MHD module fully integrated with equilibrium CPOs (thanks to IMP12 collaboration) *see later for details*
 - Fast particles module currently under testing
 - integration with fast particles CPOs to be done

Task Force

Inputs for MARST module from equilibrium CPOs (in order to substitute the standard input prepared by CHEASE)

- Quantities required by MARS/MARST module:

• integer and half-integer flux variable mesh: $s \equiv$

$$\sqrt{\frac{|\psi - \psi_0|}{|\psi_{\text{edge}} - \psi_0|}} \in [0, 1]$$

• Fourier components of the covariant metric tensor elements; CPOs contain the contravariant elements (thus, the matrix needs to be inverted):

$$g^{ss} = \left(\frac{\partial s}{\partial \psi}\right)^2 g^{\psi\psi} = \left(\frac{\partial s}{\partial \psi}\right)^2 |\nabla\psi|^2$$
$$g^{s\chi} = g^{\chi s} \left(\frac{\partial s}{\partial \psi}\right) g^{\psi\chi} = \left(\frac{\partial s}{\partial \psi}\right) \nabla\psi \cdot \nabla\chi$$
$$g^{\chi\chi} = |\nabla\chi|^2$$
$$g^{\phi\phi} = |\nabla\phi|^2 \equiv \frac{1}{R^2}$$

- χ poloidal like angular variable, such that Jacobian is: J_s = [(∇s × ∇χ) · ∇φ]⁻¹
 Equilibrium magnetic field, current, pressure: B^χ, B^φ, j^χ, j^φ, p, dp/ds
- A vacuum mesh (simple model for free boundary modes) •

Task Force

- Issues arisen during equilibrium CPOs interface (1)
 - 1D profile quantities equilibrium%profiles_1d%...

(e.g., %q, %psi, %F_dia, %ffprime, %p, %pprime): data are "almost equispaced" in the variable $s \propto \sqrt{\psi}$

- Coordinate system 2D quantities:

Task Force

equilibrium%coord_sys%	physical quantity	comment
grid%dim1	Ψ	"almost equispaced" in <i>s</i> , in principle different from 1D definition
grid%dim2	χ	$\chi {\rm mesh} \chi = (n dim2 - 1)/n dim2 * 2\pi$
grid_type	description	Straight field line: the only choice for HELENA, which implies also $J = \frac{qR^2}{2\pi F_{\text{din}}}$ Non-straight field line: choice available for CHEASE, $J_{\psi} = C(\psi)R^{\text{NER}} \nabla \psi ^{\text{NEGP}}$
position%r position%z	$ \begin{array}{l} R(\psi,\chi) \\ Z(\psi,\chi) \end{array} $	coordinates in the poloidal cross section
jacobian	$J(\psi,\chi)$	Jacobian
g_11, g_22, g_33, g_12	$egin{aligned} g^{ ext{ss}}(\psi,\chi), g^{ ext{xl}}(\psi,\chi), \ g^{ ext{qp}}(\psi,\chi), g^{ ext{sx}}(\psi,\chi) \end{aligned}$	contravariant(!) metric tensor elements

- Issues arisen during equilibrium CPOs interface (2)
 - Regular mesh don not means "equidistant mesh"!
 - signs for I_p and B_0 must be taken into account (note that usual MHD stability codes ignore those signs, whereas CPOs do not!)
 - Only one mesh is provided in the CPOs (the integer one, which includes the magnetic axis and the plasma boundary), thus interpolation is required: note that some of the metric quantities could diverge toward the origin, care should be taken in interpolating such quantities!
 - Also, interpolation of 1D quantities on the dim1 mesh is required, in order to compute all the quantities required by MARS/MARST
 - Several issues on the Jacobian definition, choice of the coordinate system for the stability mesh, etc. have been considered and agreed between ITM (see WEB page

https://www.efda-itm.eu/~wwwimp3/TEST/ITM/html/ itm_conventions.html)

- Not jet available in equilibrium CPOs:
 - maps $\psi(R, Z)$, $\chi(R, Z)$ (ready from IMP12?)
 - Christoffel symbols (require derivatives of the metric tensor elements)

Task Force

Gateway MARS/MARST version

Task Force

- The exercise of modifying the MARS/MARST MHD module used by HYMAGYC in order to read the equilibrium quantities from the CPOs is almost completed
- a C preprocessor produces the FORTRAN for standard use or the one required to interface the code with the CPOs:
 - transforms the module from a "main" to a "subroutine(equilibrium_in)"
 - declares type_equilibrium, and interface quantities
 - the standard input routine is substituted by the ones which reads the CPOs and computes all the derived quantities (subroutine input_gw (equilibrium_in), which, on turn, call the module read_eq_CPOs_MARS.f90)
- A driver to run and test the Gateway version of the code reading an equilibrium CPOs (driver_mars_fftw_gw_linux.f90) has been written
- Tested on CPOs produce by HELENA and CHEASE
- Still to be done:
 - write the XML code specific parameters inputs
 - write the ouput results to the MHD stability CPOs