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Overview

• Motivation: numerical errors=>parametric 
noise 

• Linear stochastic stability analysis
• Description of stochastic Runge-Kutta 

integrator



Motivation

• The  Accelerated Orbit Following Monte-Carlo 
(AOFMC) Method [1-3] stochastic version of 
the perturbation theory of integrable Hamiltonian 
systems.(Neichstad theorems: V.I.Arnold,Special 
Chapters on Differential Equations, MIR, 1970)

• Numerical errors=>parametric noise 
• Parametric noise destabilizes the stable linear 

systems [Steinbrecher, G.; Weyssow, B.   Phys. Rev. Lett. 2004, 
92, 125003-1 - 125003-4.]



The physical model, without 
numerical errors

• Hamiltonian integrable vector field Vi(x) .
• x={p1,q1, p2,q2, p3,q3}
• The Fokker-Planck equation  for the gyro-

averaged particle motion in axial symmetric 
tokamak magnetic field configuration in the 
full 6D phase space.
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The unperturbed motion

• Hamilton equation:                                   

• Gyro-angle q3 and toroidal angle q1. 
• Liouville-Arnold theorem [4]: all of the 

trajectories are on some 3D torus.
• The 6D phase space is foliated  by these 

invariant tori[4]. 
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The physical model

• The terms U and D are related to collisions, 
ripple and RF heating.

• The variables p={p1,p2,p3} are 
invariants;(magnetic momentum= p3 )

• The phase space is foliated by tori labeled by p.
• Consider only the case without resonance, with 

incommensurable frequencies. Then the 
unperturbed motion (due to V(x) )  is ergodic 
when restricted to the invariant tori. 



ERGODICITY

• The fast motion on tori is ergodic. Slow perturbed 
motion of the invariants.

• Approximations: in deterministic case the Gauss 
averaging principle const. density on torus

• Stochastic approach: small parameter expansion 
Tbounce/Tcollision 

• Example: 2D square lattice (Oy, Ox), random 
resistor network. Shortcut along Oy<=>ergodicity

• 1 dim effective lattice.Averaging of conductivities 
in Oy direction .



Optimal AOFMC UPDATES    
∆t<<Tcollision

• Denote: Si=Ui+∂i Di,j .  
• Select positions xa at N time step ti on a 

bounce period. Sampling points on torus.
• The update x→x+δx is
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Computing local averaged
diffusion matrix and drift

• Method 1. Orbit following. Ergodicity
• Method 2. Monte-Carlo or deterministic 

integration on the torus, if the analytic form 
of the relation with action-angle variable is 
known

• At resonance (T_toroidal/T_bounce 
rational) problems.



The AOFMC update (2)

• ∆wi
a are. centered Gaussian variables with 

covariance  <∆wi
a ∆wj

b>=∆t δa,b Di,j .
• This update corresponds to one accelerated 

time step.
• Also a statistical error of order N-1/2

appears. It is a parametric noise, in the 
orbit averaged FP equation.



Model 1: errors in drift term

• The exact orbit averaged Fokker-Planck
equation. Pi= the invariants (∂I=∂/∂Pi)

• Denote
• The ITO SDE is
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AOFMC  approximation of 
OAMC

• The drift term Vi is subjected to sampling 
errors dWi

(N) along simulation, caused by an 
estimation of the orbit averaged drift term 
by N samples.

• Assume: dWi
(N) are  Wiener processes: 
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The effect of sampling error on 
drift (1)

• The new SDE is
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The effect of sampling error on 
drift (2)

• From the simulations results an apparent
evolution with an increased diffusion 
matrix.

• In this model no parametric destabilization 
appears. The new diffusion matrix is
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Conclusion

• The effect of sampling errors in averaging 
the drift, produces an increase of the 
approximants of diffusion matrix of order 
O(N-1/2). 

• Destabilization of linear stable points. 
(Random multiplicative process, 
parametric noise).



Perturbations of the diffusion term.
Modelling the effects of sample 

errors =parametric noise

• Two state Poisson process η(t), time constant 
λ>0. Random switching between η(t)=±1 states. 

• Balescu, R. Aspects of Anomalous Transport in 
Plasmas; I.O.P. Publishing, Bristol, 2005.

• Easy generalization to arbitrary N states, that 
approximates the real numerical noise

• Denote f±(P, t), f-(P, t) the distribution
functions.



Perturbations of the diffusion 
term(=parametric noise)

• Model without drift. Standard normalised 
Wiener independent process wi(t):

• The diffusion matrix in η(t)=±1 states
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Perturbations of the diffusion term. 
Equation for PDF

• Combination of Poisson and diffusion 
processes

• Notations:
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Perturbations of the diffusion 
term.Operator formalism

• The FP equation is

• A± and A- are positive symmetric second 
order differential operators in Hilbert space  
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Perturbations of the diffusion term. 
Hilbert space analysis

• The norm is

The operator        is defined in the extended 
Hilbert space. The norm is
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Results.

• If                then
• The evolution of the system is stable:
•

• Denote: The largest relaxation time of the 
perturbed system=T

• The largest relaxation times of the system in 
states ± by T+ ,T-.

• We have:  min(T+ ,T- )≤T≤max(T+ ,T- ).
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II. Numerical methods for 
SDE

• For SDE it is difficult to construct higher order 
Runge-Kutta algorithms. Subprograms that 
calculate the derivatives of the l.h.s. must be 
included. In simplest cases: Use 
MATHEMATICA to calculate the derivatives and 
to generate FORTRAN or C programs.

• Optimisation by hand  these output programs



Useful tips

• Use exact Gaussian noise, instead of 
dichotomous noise. Computation of the 
terms of SDE is large, compared to 
Gaussian generator.

• Integrators with Gaussian noise can be 
combined with extrapolation. Are more 
stable at large time steps.



Simplified stochastic integrator for Fokker-
Planck equation. Order 1/2, no need for 

subprograms for derivative
• The SDE for MC solution of the FP 

equation

is 

• with                                  and 
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Weak first order approximation

• The updates are
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Stochastic integrator without 
analytic derivatives

• Contrary to the deterministic case, in the case of 
the system of SDE it is difficult to construct 
higher order integrators without subroutines that 
generates numerically the derivatives. Few 
exceptions:

• The integrator from Ref.[8], page 487-487 was 
adapted.



Weak second order stochastic 
Runge-Kutta integrator

• This integrator solves the following system 
of stochastic differential equations

• Notations
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Notations 1

• The driving noise:                
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Notations 2

• Condensed   
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Notations 3

• Random matrix Va,b  . Dimension: dw
• If  b<a then P(Va,b =1)= P(Va,b =-1)=1/2
• If b>a then Va,b = -Vb,a 

• Va,a=1



Updates 1
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Updates 2
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Structure of the code 1

• The prototype of the integrator is:
• void SDEintegrator1(int dimx, int dimw, int 

dimobs, StochDiffEq* pSDE, double xstart[], 
double dt, double Ntraject, double tobs, double
tfin, double mobs[], double error[]);

• The integrator computes the time averages (from
tobs to tfin) and averages over several trajectories 
(double Ntraject). 



Structure of the code 2

• The explicit form of the system of SDE is 
given by the pointer StochDiffEq* pSDE. 
This pointer specifies the class that 
generates the functions ai (x,t) and bi,m(x,t)

• In the class StochDiffEq{} there are 
functions that returns the values of the
observables, whose mean values are 
computed.



The structure of the code 3

• The random variables dwm(t) are generated 
by the public accessible functions  from the 
class RandVariable{}, that contains 
generators for the exact Gaussian (by polar 
method), as well as more rapid discrete 
normalized variables (2 state, 3 state).



Test of the code

• Exact results on the stationary PDF from 
refs[5-8] were used for test. 



References 1

• [1]. L-G. Eriksson, M. Schneider, Phys. Plasmas 12,  
07254 (2005).  

• [2]. A. N. Kaufman,  Phys Fluids, 15, 1063, (1972).  
• [3]. L. G. Erikson, P. Helander, Phys. Plasmas 1, 308, 

(1994). 
• [4] V. I. Arnold: Special Chapters on Differential 

Equations, Mir, Moscow, 1984.
• [5]. G. Steinbrecher, B. Weyssow, Phys. Rev. Lett. 92, 

125003 (2004).



References 2

• [6]. G. Steinbrecher, W. T. Shaw, Eur. J. of Appl. Math, 
19, 87, (2008).

• [7]. G. Steinbrecher, X. Garbet, B. Weyssow, “Large time 
behavior in random multiplicative processes”, 

• arXiv:1007.0952v1, math.PR, (2010). 
• [8]. G. Steinbrecher, X. Garbet, “Stochastic Linear 

Instability Analysis”, International Workshop on
• “Hamiltonian Approaches to ITER Physics”, CIRM, 

Marseille, 2-6 November 2009.



References 3

• [9]. B. Øksendal, Stochastic Differential Equations. 
Springer, Berlin (2000).

• [10]. P. E. Kloeden, E. Platen, Numerical solutions of 
stochastic differential equations, Springer 1999

• [11] Arnold, L. Random Dynamical Systems; Springer, 
Berlin, 1998.


	Numerical Stability Analysis in the Accelerated Orbit Following Monte-Carlo  Method
	Overview
	Motivation
	The physical model, without numerical errors
	The unperturbed motion
	The physical model
	ERGODICITY
	Optimal AOFMC UPDATES    t<<Tcollision
	Computing local averaged diffusion matrix and drift
	The AOFMC update (2)
	Model 1: errors in drift term
	AOFMC  approximation of OAMC
	The effect of sampling error on drift (1)
	The effect of sampling error on drift (2)
	Conclusion
	Perturbations of the diffusion term. Modelling the effects of sample errors =parametric noise
	Perturbations of the diffusion term(=parametric noise)
	Perturbations of the diffusion term. Equation for PDF
	Perturbations of the diffusion term.Operator formalism
	Perturbations of the diffusion term. Hilbert space analysis
	Results.
	II. Numerical methods for SDE
	Useful tips
	Simplified stochastic integrator for Fokker-Planck equation. Order 1/2, no need for subprograms for derivative
	Weak first order approximation
	Stochastic integrator without analytic derivatives
	Weak second order stochastic Runge-Kutta integrator
	Notations 1
	Notations 2
	Notations 3
	Updates 1
	Updates 2
	Structure of the code 1
	Structure of the code 2
	The structure of the code 3
	Test of the code
	References 1
	References 2
	References 3

