EUROPEAN FUSION DEVELOPMENT AGREEMENT

Task Force
INTEGRATED TOKAMAK MODELLING

. o0 P
5 747
(Q >
B— SIS =
e e S
NN N

! g |
Quick introduction to

documentation with Doxygen

L EFDA 13 e

EUROPEAN FUSION DEVELOPMENT AGREEMENT
INTEGRATED TOKAMAK MODELLING

Outline

« For a code to be fully integrated into the ITM there has to be two types
of documentation:

* For the developer
e Forthe user
« Documentation can be written in word/LaTex...

 Documentation for developer: an effective choise is to use
documentation tools, i.e. tools that automatically generate
documentation directly from your Fortran/C/IDL/Javal/... source files.

 Doxygen — commonly used within ITM
« Fortdocu — never tried myself
« Javadoc — good for Java

« Suggestion: If you ever plan to use Doxygen — start coding with
Doxygen in mind already today!

* 'l show quick introduction to Doxygen and a few examples

ITM General Meeting, September 2010

L EFDA 13 e

EUROPEAN FUSION DEVELOPMENT AGREEMENT
INTEGRATED TOKAMAK MODELLING

Doxygen: step 1

* You'll need Doxygen installed on your computer

« Unfortunatelly Doxygen at the gateway is not working as it
should; something wrong with the Fortran setting |
understand.

 For Mac users, Doxygen can be installed with Darwinports
(Macports) http://darwinports.com

« Everythings freeware!
e ...and theres lots of documentation/tutorials online

* | hope this will give you glimps of what Doxygen can do
and maybe help you get you started — you can
generate test-documentation for your code in 5 min!

ITM General Meeting, September 2010

':::::' EFDA Task Force

EUROPEAN FUSION DEVELOPMENT AGREEMENT
INTEGRATED TOKAMAK MODELLING

Once installed, you have to setup
Doxygen for your project

*Go to directory with your source files

*Generate a default configuration file:
doxygen —g <filename>

example of auto-generated

configuration file —

Doxygen: getting started

*Now run
doxygen <filename>
Still no documentation...

* You'll get HTML/LaTex files
(in ./html/ and ./latex/)

|t can look much better! So next;
configure doxygen for your project

ITM General Meeting, September 2010

ETS

Doxyfile 1.7.1

This file describes the settings to be used by the documentation system
doxygen (www.doxygen.org) for a project

All text after a hash (#) is considered a comment and will be ignored
The format is:
TAG = value [value, ...]
For lists items can also be appended using:
TAG += value [value, ...]
Values that contain spaces should be placed between quotes (" ")

3 oI I I I I I I I

This tag specifies the encoding used for all characters in the config file
that follow. The default is UTF-8 which is also the encoding used for all

text before the first occurrence of this tag. Doxygen uses libiconv (or the
iconv built into libc) for the transcoding. See

http://www.gnu.org/software/libiconv for the list of possible encodings.
DOXYFILE_ENCODING = UTF-8

The PROJECT_NAME tag is a single word (or a sequence of words surrounded
by quotes) that should identify the project.

PROJECT_NAME =

The PROJECT_NUMBER tag can be used to enter a project or revision number.
This could be handy for archiving the generated documentation or
if some version control system is used.

PROJECT_NUMBER =

The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute)

base path where the generated documentation will be put.

If a relative path is entered, it will be relative to the location

where doxygen was started. If left blank the current directory will be used.

OUTPUT_DIRECTORY =

' EFDA Task Force Doxygen: configuration

INTEGRATED TOKAMAK MODELLING

« Configuration can be done by hand or in doxwizard (I've never tried it)
« Some changes to try out:
« PROJECT_NAME = <my_projects _name>

« OUTPUT_DIRECTORY = docs/
(this will put all documentation in directory docs/ — very handy!)

 FILE_PATTERNS= *.f90 *.F *.f
(not necessary; default settings seem ok)

. OPTIMIZE_FOR_FORTRAN = YES
(or OPTIMIZE_FOR_C = YES)

« EXTRACT_ALL =YES
« SOURCE_BROWSER =YES

« GENERATE_LATEX =NO
(in case you dont need the LaTex output; Latex generates *.tex pages and one huge
pdf file.)

For call/caller graphs

« HAVE _DOT =YES

« CALL _GRAPH=YES

« CALLER_GRAPH =YES

ITM General Meeting, September 2010

subroutine ripple_module:VesWidthAtZ (REAL(kind=params_wp),intent(in) ZVAL,
REAL(kind=params_wp),intent(out) RLEFT,
REAL(kind=params_wp),intent(out) RRIGHT, Exa m p I e frO m AS C OT
INTEGER,intent(out) il -

INTEGER,intent(out) 12
)

Definition at line 1131 of file ripple_module.f90.

References channel:channel_out, magnrz:magnrz_linr, " dom s et A e

Referenced by ripple_init(). ripple_module.f90

+ Here is the caller graph for this function:

ripple_module::\VeswidthAtz Co to the documentation of this file.

00001 MODULE ripple module

00002

00003 USE params, ONLY: params_ir, params_iz, params_wp

00004 IMPLICIT NONE

00005 !

00006 oo o o o o
References ripple_tbrl, ripple_tbrbx1, ripple_tbrbx2, ripple_tbz! 00007 !

ripple_tdbrx2, ripple_tdbz1, ripple_tdbz1r, ripple_tdbz1z, rippl' 00008 ! Magnetic ripple variables:

subroutine ripple_module:ripple_dealloc ()

Definition at line 1195 of file ripple_module.f90.

ripple_tdrbx2r, and ripple_tdrbx2z. 00009
00010 ! ripple b - ripple magnetic field magnitude (T)
X . 00011 ! ripple bt - toroidal component of ripple magnetic field (T)
Variable Documentation 00012 ! ripple bp - poloidal component of ripple magnetic field (T)
00013 ! ripple br - R component of ripple magnetic field (T)
l

INTEGER,save ripple_module:ripple_ncoil 00014 ! ripple bz z component of ripple magnetic field (T)

Definition at line 78 of file ripple_module.f90.

Referenced by ASC000(), ASCBKG(), ASCCVG(), ASCCXD(), ASCEQU(), ASCIN1(), ASCINP(), modAscipt::ASCIPT(), ASCVCS(), ASCWVG(),
BTPWVG(), fullorbit_module:fullorbit_FOtoGC(), bkg_generator:init_mgfield(), InputOptionsCreate(), and
andiff:movelnRhoKeepVelocity().

INTEGER,save ripple_module:ripple_ncl

Definition at line 78 of file ripple_module.f90.
Referenced by ASCINP(), and ripple_eval().

T EFDA Task Force Doxygen: Documentation in the

EUROPEAN FUSION DEVELOPMENT AGREEMENT

INTEGRATED TOKAMAK MODELLING source code

There’s still no documentation in there!
But it is all for free - and when combining it with written documentation,
that’'s what's useful!

So how do | make the documentation in my code appear in the Doxygen
documents?

In Fortran: use “1>", e.qg.
"I> This text will appear in Doxygen documents — wohoo :)”
In C / C++/Java:
“/**x Here'’'s a doxygen
* section for a C-code!

*/”

For fortran code: in Emacs, run “Replace regexp...” from "!" to “I>”

(If you use Emacs, but don't know about “Replace regexp...”; let me
know and I'll show you)

NOTE: if you start writing comments with “1>" it will be easy to use
Doxygen in future.

ITM General Meeting, September 2010

L EFDA 13 e

EUROPEAN FUSION DEVELOPMENT AGREEMENT
INTEGRATED TOKAMAK MODELLING

Special commands

There are a number of FLAGs that you can put in to your source code, which the
doxygen compiler will identify, e.qg.:

*/mainpage the following text will appear as the Main-page/
front-page of your Doxygen documentation.

*/version <No.> allow you to define the version number in your
source code rather then in the Doxyfile.

/author <name>

*/param <abc> describes the parameter <abc> of an function

*/return describes the return value of an function

*/date <date>

*/note Will add a note keyword in bold if desired.

*/briefa short code description

/file <abc.de> describes the file <abc.de>
*/todo <task> adds description of what needs doing to a to-do list.
*/bug <description> Adds <destription> to a list of bugs

ITM General Meeting, September 2010

. EFDA Task Force Doxygen example (from RFOF)

INTEGRATED TOKAMAK MODELLING

I> function quasilinear_RF_diffusion_coeff(marker,RFlocal,mem) result(diffusion)

!> Quasilinear diffusion coefficient for resonant interactions between
!> RF wave field and charged particle in an inhomogeous magnetic field.
I> This is a local operator given by the local magnetic fields and wave
!> quantities and their time derivatives in the frame of the particles.

Latex Equatlon I> The diffusion coefficient in \f$ I_\perp \f$ is:

\f[D = \frac{1}{2} \leftl \tau Ze v_\perp E_{eff} \rightl|A2 \f]
!> See [L.-G. Eriksson, Nuclear Fusion, 2005]

1>

I> \attention \c dIperp is in units [MeV].

1>

1> [INPUT

!> \param marker Properties of the marker (weight, mass, charge, velocity...)

1> \param RFlocal Local properties of the RF wave field (\f$IB|, RB_\phi,\dots\f$)
real(8) RFOF_kick:quasilinear_RF_diffusion_coeff (type(farticle),intent(in) marker, \param mem Short term memory of the resonance condition along the orbit

type(Jf_wave_local),intent(in) RFlocal,

typefresonance_memory),intent(in) mem

\f$ D = <dI_\perp dI_\perp> \f$
during one crossing of the resonance.

function quasilinear_RF_diffusion_coeff(marker,RFlocal,mejn) result(diffusion)

Quasilinear diffusion coefficient for resonant interactionsjbetween RF wave field and charged particle in an
inhomogeous magnetic field. This is a local operator givgn by the local magnetic fields and wave quantities and
their time derivatives in the frame of the particles.

The diffusion coefficient in 1, is: ign quasilinear_RF_diffusion_coeff(marker,RFlocal,mem) result(diffusion)

D = JirZeviEeyyl | Infut
_ ‘ typefparticle), intent(in) :: marker
See [L.-G. Eriksson, Nuclear Fusion, 2005] type rF_wave_local), intent(in) .+ RFlocal
Attention: typef resonance_memory), intent(in) :: mem

dIperp is in units [MeV].

\param help Doxygen

Parameters:
marker Properties of the marker (weight, mass, charge, velocity...) 'd 'f h d H 1 f
RFlocal Local properties of the RF wave field (|B|, RB;,...) I entl y t e escrl ptlon O
mem _ Short term memory of the resonance condition along the orbit

your parameters

OUTPUT

Parameters:
diffusion (out) Quasilinear scattering coefficient : D =< dI,;dI, > during one crossing of the

resonance.
RFOF_kick::Iperp_derivative |
[b Here is the call graph for this function: H | RFOF_kick::quasilinear_RF_MC_coeff

» Here is the caller graph for this function: j RFOF_kick::quasilinear_RF_diffusion_coeff }—b‘ RFOF_kick::max_RFkick_in_single_pass |—>| RFOF_kick::itau_RF_phase_integral |

——

.t EED A Task Force Doxygen example: main page

INTEGRATED TOKAMAK MODELLING

How to couple your orbit following code to RFOF

” . ”
Generate the maln-page (your 1. Generate the data structure needed in RFOF. These are NOT global and your code has to keep track of
. them (keep your pointers until data is deallcocated). RFOF provides constructors for these data structures:
index.html) by the label

o THE MARKERS: The marker structure are set in the subroutine set_marker_ pointers in the
\ 1 module RFOF_markers. The markers data, e.g. v-parallel and psi, are all stored as pointer to your
malnpage’ eg " internal markers; i.e. both your code RFOF access the same memory and changes set in RFOF are
immediately seen in your code, ad vice versa. This routine therefore require you to provide TARGETs

° In Fortran Code, Or for all marker variables. It also means that this structure is set only once per marker.

o THE RESONANCE MEMORY: In order to evaluate the wave-particle interaction strength you need to
° . f rt fI <t t> d know the time derivative of the cyclotron frequency of the marker, thus the short term time-history
In non' O ran I e eS . OX of the particle needs to be stored. This is the perpose of the "resonance-memory". The memory is
contructed by the subroutine constructor_rf resonance memory matrix in the module
RFOF_resonance_memory. Note that this memory is specific for each particle and has to be reset
every time you switch to tracing a new particle. To reset the memory use the subroutine

/*1 reset_rf resonance_memory_matrix in the module RFOF_resonance_memory.

\mainpage RFOF - Radio Frequency Monte o THE RF WAVE FIELD: The RF wave field is handled entirely inside RFOF. The contructor is

Carlo Library for Orbit Following Codes dummy_rf wave_field in the module RFOF_resonance_memory. At the moment this constructor
generates a dummy field with constant components over the entire plasma.

\author Thomas Johnson, Antti Salmi\n o THE RF-INTERACTION DIAGNOSTICS: The diagnostics is handled entirely inside RFOF. The contructor

Developed for the EU-ITM, Integrated is contructor RFOF_cumlative_diagnostics in the module RFOF_diagnostics.

modelling project 5, ACT4-2010. 2. Write a subroutine to provide RFOF with your magnetic field data. The subroutine should be called

local_magnetic_field_interface_to_RFOF and the interface for this routine is given below.

\n<hr>\n 3. Now we are ready to give the markers RF "kicks". The subroutine to call from your orbit code is
RFOF_master in the RFOF_main module; this routine should be called after every time step performed by
<h2> your orbit solver. The routine will first check is the particle is in resonance with any of the wave-modes in

your RF wave field (resonance here mean "close enough to the resonance”). If it is in resonance then it will
Code status: give the particle RF "kicks" for each resonant wave mode. If the particle is not in resonance it will check if
</h2> D h dl the particle has crossed any resonance without recieving a kick. If so, an error flag is raised, and an

Oxygen an eS estimate for the time at which the particle crossed the resonance is returned. It is suggest the you refine

and redo your time step such that the new time step ends at the estimated time of the resonance. In case
- The code can f1 mOSt HTM L the step is successful, then the RFOF_master will return the time at which the next resonance should
position for non-ao occure. You may then use this time to decide the length of the folloing time step.

i.e. judge if parti fu nCtlonS 4. Every time you switch from tracing one marker to the next you are have to both set the marker pointers as
and predict the time—crrw S — in 1.1 and to reset the resonance memory as described in 1.2.

future and past resonance. For time- 5. In later versions the strength of the RF wave field should be updated regularly. This is not implemented
acceleration the time derivatives are has yet.

to be treated over orbit time rather then 6. At the end of the program all allocated memory should be deallocated. The destructors you need are:

simulation time and special care has to

be taken when the rate of time-
acceleration is changed. o destructor rf resonance memory matrix from the module resonanceMemory.

o rf wave_destructor_matrix from the module RFglobal.

L o detructor_ RFOF_cumlative_diagnostics from the diagnostics module. ‘[

10

ITM General Meeting, September 2010

