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Abstract 

   Analytic results on the propagation of the numerical errors in the accelerated 
orbit following Monte-Carlo (AOFMC) method are exposed. A simple trick that reduces the 
programming complexity is suggested. The structure of a code for a second order stochastic 
Runge-Kutta integrator is presented.  

1. On the sampling errors in the orbit following method 
 Consider the Fokker-Planck equation that describes the gyro-averaged particle 
motion in axial symmetric tokamak magnetic field configuration in the full phase space. Its 
general form (at the collision time scale) is 

   (1.1) 
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I= / xi). Typically x={p1,q1, p2,q2, p3,q3} with gyro-angle q3 and toroidal 

angle q1. The vector field Vi(x) represents an integrable Hamiltonian system. The terms U and 
D  are related to collisions, ripple and RF heating. The variables p={p1,p2,p3} are invariants. 
The phase space is foliated by tori labeled by p. The MC update in the case of R.F heating 
was studied in refs.[1-3]. Consider only the case without resonance, with incommensurable 
frequencies. Then the unperturbed motion (due to V)  is ergodic when restricted to the 
invariant tori. The frequency of the (unperturbed) motion in the variables q={q1, q2, q3}, 
related to the motion on the invariant tori, is large compared to the collision  frequency. 
Consequently the following sequence of updates will give an approximation of the MC 
method performed with the exact orbit averaged U and D, in the 3 D space of invariants.  
 Denote Si=Ui+ i Di,j . Follow the trajectory on a single bounce period and 
memorize the positions. Because the toroidal frequency is much larger, the points of the 
trajectory are approximately uniformly distributed (in the angle variable) on the invariant 
torus. Denote the positions xa., at N time step ti on a bounce period. These time steps can be 
random or deterministic uniform.  Compute the update x x+ x (corresponding to orbit 
averaged movement) where 

                         (1.2) 
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where  t is a small time step compared to the collision time, wi
a. are. centered Gaussian 

variables with covariance  < wi
a. wj

b.>= t a,b Di,j . This update corresponds to one 
accelerated time step. In the backward Kolmogorov equation appears at each update step an 
approximate orbit averaged diffusion coefficient and drift.     Also a statistical error of order 
N-1/2 appears whose effect will be studied, in the following analytic simplified models. 
 

2.The numerical instabilities induced by sampling errors in orbit following method 
  In order to study the effect of the approximation of the orbit averaging, with 
random errors at each accelerated step, we consider a simplified model of the numerical 
process. For solubility reasons we consider the space of the invariants is one-dimensional. 
The stochastic differential equation (SDE), that describes the evolution of the invariant x has 
the form  dx=v(x) dt+ (x) dw(t), where w(t) is a standard Wiener process, and v(x) is the orbit 
averaged drift. The orbit averaged diffusion coefficient is modeled by D(x)= (x)2. In the 
AOFMC estimation there are statistical fluctuations in the drift and the diffusion coefficient, 
consequently the real evolution of the results of the Monte-Carlo simulation is described by 
the SDE dx=[v(x)+ v(t)] dt+[ (x)+  (t)] dw(t). Here v1 and 1 are respectively the 
statistical fluctuations of the drift and of the diffusion coefficient in the process of numerical 
Monte-Carlo approximation of the orbit-averaged values. Ornstein-Uhlenbeck process models 
the fluctuations of the velocity and diffusion coefficient: 
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The symbols v and   denotes the intensity of the numerical noises that perturb the drift and 
the diffusion coefficient. The standard Wiener processes dw, dw1 and dw2 are independent. 
The amplitude of the processes y1 (t) and y2 (t) are normalized to unit. Their correlations times 
are 1 respectively 2 .  

2.1 The linearized approximation 
 We approximate locally the drift and dispersion by linear functions  
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 The resulting equation describes a random walk on the one-dimensional affine 
group  
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  In the framework of this approximation, in the case v1 <0  (that is a 
deterministically stable system) the resulting model is a particular case of the stochastic 

models of the parametric instability, studied in the works [4-7]. The resulting equation 
describes the evolution of a subcritical stochastic system that randomly crosses the instability 
threshold, due to the term 1 x. Without noise, when 1=0, in the stationary state the random 
variable x(t) has an approximate Gaussian distribution near the equilibrium state, with half 
width   that can be approximated by 
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 In the general case, when 1 0, the probability distribution of the random variable 
x(t) in the stationary state is less concentrated. According to the results from refs. [4, 6] for 
large amplitudes it has the following asymptotic decay 

     2)|)((| XXtxprob
 The exponent  is given by 
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 The half-width of the distribution near the equilibrium point is given by 
= m / 1 .  The main effect is the destabilization: instead of the Gaussian distribution we 

have power law decay. The numerical errors have a power law distribution instead of a  
Gaussian one, even in the deterministic stable case. 
 

2.2.The effect of sample errors in the orbit averaged drift term. 
 Consider the exact orbit averaged Fokker-Planck equation for the distribution 

function ),,(   of the invariants (321 PPPf I= / Pi) 
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The corresponding stochastic differential equation in the Ito formalism is 
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  Suppose that only the drift term Vi  is subjected to numerical errors along 
simulation, caused by an estimation of the orbit averaged drift term by N samples. Correlated 
white noises dWi

(N) will approximate these errors. Then the stochastic differential equation 
has this new term: 
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Consequently, from the simulations results an evolution with an increased diffusion 
coefficient 
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  The same estimation results by approximating the errors in the second term in (2.2) by white 
noise.  

2.3. The effect of sample errors in the diffusion term. 
Contrary to the errors in the drift term, the following analysis proves that the 

fluctuations in the orbit averaged diffusion term do not produce instabilities.  
The effect of the noise on the diffusion coefficient will be modeled by a dichotomous 

symmetric random Poisson process with time constant >0. Denote   the states of the two 
state random variable = 1 and by f (P, t) the distribution function in the corresponding 
states, by a i,m the random terms in these states. Neglecting the drift terms we have the 
stochastic differential equations 
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The equation for the distribution function is   ( I= / Pi) 
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  The main result is: The bistable noise does not induce instabilities. For a 
more precise formulation observe that the Eq.(2.3) can be rewritten in a matrix form 
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where A   are positive symmetric second order differential operators in a Hilbert space H. 
This Hilbert space is defined by the norm  
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The operator B , is defined in the extended Hilbert space of the couple of functions (f+, f- )T 
with the norm  
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 By using this formalism we have the following:  
 Proposition 
 The evolution of the system perturbed by dichotomous noise, that models the fluctuations of 
the diffusion coefficients in the Fokker-Planck equation Eq.(2.1) is stable, in the sense that  
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For the largest relaxation time T of the perturbed system and the relaxation times T   of the 
system in states  , we have:  min(T+ ,T- ) T max(T+ ,T- ). To each pair of eigenvalues 
 (a+

m , a-
n  ) of the operators (A+, A-) , the operator B has a pair of eigenvalues (bm,n

(1), bm,n
(2)) 

such that min (a+
m , a-

n  )   bm,n
(1)  max(a+

m , a-
n  )  bm,n

(2). For  ( when the noise 
approaches the white noise) we have bm,n

(1)  (a+
m + a-

n  )/2 . 
 
                           3. Numerical methods 

3.1. Simplified programming with stochastic Euler method 
 The use of the analytical form of the derivatives Eq.(2.2) in the Monte-Carlo simulation 
of the traiectories can be avoided by using the two step modification of the Euler-Maruyama 
scheme. Consider the Ito stochastic differential equation with standard independent Wiener 
processes dwm 

       (3.1) 
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and the following updates, after the increments dwm were generated  
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Then [8], the Fokker-Planck equation for the probability density f(x,t)has the form  Eq. (2.1).  
 
 3.2 Weak order 2 stochastic integrator for general system of SDE 
 Contrary to the deterministic case, in the case of the system of SDE it is difficult 
to construct higher order integrators without subroutines that gnenerates numerically the 
derivatives. The integrator from Ref.[8], page 487-487 was adapted. The prototype of the 
integrator is:  void SDEintegrator1(int dimx, int dimw, int dimobs, StochDiffEq* pSDE, 
double xstart[], double dt, double Ntraject, double tobs, double tfin, double mobs[], double 
error[]); 
 The integers dimx, dimw has the meaning from Eq.(3.1), dim x the minimal 
dimension of the array xstart[], that gives the initial position . The parameter dimobs is the 
number of observables whose mean values and errors are in the arrays mobs[] and error[]. 
The integrator computes the time averages (from tobs to tfin) and averages over several 
trajectories (double Ntraject). The explicit form of the system of SDE is given by the pointer 
StochDiffEq* pSDE. This pointer specifies the class that generates the functions ai (x,t) and 
bi,m(x,t) from Eq.(3.1). In the class StochDiffEq{} there are functions that returns the values of 
the observables, whose mean values are computed. The random variables dwm(t) are 
generated by the public accessible functions  from the class RandVariable{}, that contains 
generators for the exact Gaussian (by polar method), as well as more rapid discrete 
normalized variables, accessed from the interior of the function SDEintegrator(.). The 
integrator was tested by using exact results from refs.[4-6].  
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