Neutral Beam Injection in ITM

Mireille Schneider, L.-G. Eriksson

OUTLINE:

- Neutral beam CPOs <u>*nbi*</u> and <u>*distsource*</u>
- Description of the NEMO NBI source model and input/output
- NBI setup routine ⇒ fills input CPO <u>nbi</u>
- Standalone Test Bed for NEMO ⇒ produces CPO <u>distsource</u>
- The Kepler NBI test workflow
- Summary and prospects

The NBI input CPO **<u>nbi</u>**

nbi

CPO.

Ē

- Plasma composition
 - Pointers to injected and plasma species
 - Power and energy for each injection unit
 - Particle fraction for each energy

• Geometry of the injector: \Rightarrow position, tangency radius, angle, direction, divergence, focal lengths, beamlet positions.

The NBI output CPO distsource

- Plasma composition
- Pointers to injected species
- Scalar quantities: source power and source rate
- 1D profiles: toroidal flux coord., power density, source rate
- 4D source matrix: source of particles (ndim1,ndim2,ndim3,ndim4) and its associated vectors
- Source as a set of test particles and its associated vectors

The NBI source model in NEMO

NEMO is based on the narrow-beam model first seen in [Y. Feng et al, Comp. Phys. Comm. 88 (1995) 161-172].

⇒Simplified geometry:

NEMO input

Plasma geometry:

- Plasma major & minor radius
- SOL radius or (R,Z) wall coordinates
- 2D toroidal flux coordinate in (R,Z) grid n_e, n_i, T_e, T_i profiles
- B_R , B_7 , B_{ω} of the magnetic field
- Direction of B_T and I_P

Beam geometry:

- Number of beams in the injector
- Tangency radius of each beam
- X, Y, Z, R coordinates of each beam
- Angle between beam and Z-midplane
- Horizontal & vertical focal distances
- Beam divergence (rad)
- Width & height of each beam source
- Directivity

Plasma kinetics:

- Radial coordinate vector
- Plasma volume profile
- - Mass & charge of plasma ion species

Beam parameters:

- Power on each beam
- Energy of injected neutrals
- Particle fraction per energy
- Mass & charge of injected neutrals

NEMO output

Profiles:

- Radius coordinate vector
- Heating profile per energy and beam
- Power profile per energy and beam
- Pitch profile per energy
- Torque profile

Scalar quantities:

- Particle shinethrough per beam
- Power shinethrough per beam

Deposition matrix and associated vectors:

- Deposition 5D matrix (beam, E, R, Z, pitch)
- X, Y, Z, R, pitch vectors associated to birth matrix

CPO implementation in **NEMO**

The NBI setup routine

Purpose: to fill in the <u>*nbi*</u> CPO structure needed as input for an NBI source code (note: official machine descriptions for NBI injectors are not yet available; for now the relevant data are therefore set in nbisteup)

<pre>subroutine nbisetup(corep_input, nbi_cpo) use euITM_schemas implicit none integer:: nbtime,nrho,nspec,idxtime,npini,ipini,ibeamlet, integer:: idx,shot,run,refshot,refrun,i,nbeamlets,k,itoka</pre>	• requires <u>coreprof</u> CPO • writes <u>nbi</u> CPO
<pre>double precision:: source_width,source_height double precision:: y_beamlet_min,y_beamlet_max,z_beamlet_ double precision, dimension(:), allocatable :: x_source,y double precision, dimension(:,:), allocatable :: x_beamle double precision, dimension(:,:), allocatable :: r_beamle</pre>	min,z_bea _source,z ts,y_beam ts,phi_be
<pre>type (type_coreprof),pointer :: corep_input(:) type (type_nbi),pointer :: nbi_cpo(:)</pre>	<pre>! FILLING INPUT NBI STRUCTURE nbi_cpo(1)%setup_inject%beamlets%position%r = r_beamlets nbi_cpo(1)%setup_inject%beamlets%position%z = z_beamlets nbi_cro(1)%setup_inject%beamlets%position%z = z_beamlets</pre>
 Calculates width and height of beam source from beamlets' coordinates. 	<pre>do ipini=1, npini if(itokamak.eq.1) then nbi_cpo(1)%setup_inject%peamlets%position%pn1 = pn1_beamlets if(itokamak.eq.1) then nbi_cpo(1)%halfe_cfr%yalue(ipini) = 0</pre>
• Fill the <u><i>nbi</i></u> CPO structure	nbi_cpo(1)%natte_cfr%value(ipini)= 0.nbi_cpo(1)%thirde_cfr%value(ipini)= 0.nbi_cpo(1)%pow_unit%value(ipini)= 2.0625e6nbi_cpo(1)%inj_eng_unit%value(ipini)= 1.e6

The NEMO standalone Test Bed

Purpose: to read required CPOs from database and to call NEMO in order to fill in the *distsource* NBI output CPO.

The NBI test workflow in Kepler

Composite actor containing NEMO

Run of the NBI test workflow

Summary and prospects

• NEMO (NEutral beam MOdelling) NBI source code ported to the ITM gateway (gforge project = nemo), CPOs implemented, standalone Test Bed created, kepler actor created, NBI test workflow created and running.

⇒The same will be done for following Fokker-Planck codes

- SPOT (Simulation of Particle Orbits in a Tokamak): orbit following Monte Carlo code for fast ion trajectory (gforge project = spot)
- RISK (Rapid Ion Solver for tokamaKs): bounce-averaged Fokker-Planck solver for fast ions (no gforge project yet)

This will create a complete NBI modelling capability for the ITM!

Workflow coming to a Kepler near you soon!

