- EUROPEAN FUSION DEVELOPMENT AGREEMENT

Task Force
INTEGRATED TOKAMAK MODELLING

for orbit following codeS\ |
T Johnson, A Salmi, L-G Eriksson, J HO6k, T. Hellsten, R Dumont, M Schneider, D ZarzosO‘

NN

Background

Lack of Fokker-Planck code in community able to model fast ions from ICRF, NBI and fusion reactions, including wide
guiding centre orbits. Priority support was allocated to develop such a code. But what type of code should be built?

* Monte Carlo / Finite difference / Finite element
 Orbit averaged / Orbit following

Decision: Extend available codes by adding ICRF

« SPOT & ASCOT: Orbit following Monte Carlo — add ICRF €«————This poster!
* FIDIT: Orbit averaged finite difference — add ICRF

This poster concerns:
* Progress on generic RF operator; RFOF - Radio Frequency Monte Carlo Library for Orbit Following Codes
 First results from coupling with ASCOT

Traditional disadvantage with orbit following Monte Carlo for RF:
« Quasilinear evolution on slowing down time scales (~1s), while orbit tracing resolves fractions of bounce time (10-°s)
» Orbit averaged codes can take up to 1000 longer time steps

However, a new Monte Carlo operator [L.-G. Eriksson et al, Phys. Plasmas 12, 072524 (2005)] will allow RFOF to work
with accelerated orbit time integration, i.e. let one orbit represent N, orbits, as is commonly done in NBI codes like
NUBEAM/ASCOT/SPOT. This will make CPU times for orbit following / orbit averaged codes of the same order.

Integration of RF operator in orbit following code

ASCOT and SPOT solve Fokker-Planck equation by separate orbit tracing / collision / RF interaction:

Df
Di =C(f)+ Ok (f)

Lo/ g _ g _
U I T N S Yonv)

Orbit tracing Collisions RF acceleration

These codes assume time step to be small and operators commute and can be added sequentially
This allows RFOF to be independent of both orbit tracing and collisions

RFOF is being written to be a generic library; should be possible to couple to any orbit code

INPUT:

. Marker/particle properties (r,v); set at initialisation to be pointer to marker, i.e. set only once per marker!

. RF-wave field; only pointers passed between routines, RF-wave stored as ITM cpo Waves

. Magnetic field; provided to RFOF through interface to subroutine, i.e. wrapper needed to interpolation

routines inside orbit code

OUTPUT:
. Updated marker properties, after acceleration by RF wave
. Prediction of the time of future resonances; allow orbit traces to adjust time step to end at the resonance

o In case the orbit step was too long and marker crossed resonance without RF kick; then return expected
time of resonance to allow orbit solver to redo time step

Workflow of RFOF

» Initialise and allocate data structures for RFOF
* In orbit code: after each step on orbit call RFOF
1. RFOF evaluates resonance condition
2. FOR "waves resonant with particle”
v Give RF kick
3. ENDFOR
4. RETURN:
v MARKER: Updated particle

v' TIME_AT_RESONANCE
(prediction: next resonance /
missed resonance)

* Output diagnostics & deallocate memory

CODE STATUS (from documentation)

The code can find the resonance position for non-
accelerated schemes; i.e. judge if particle is in resonance
and predict the time and position of future and past
resonance. For time-acceleration we have to separate orbit-
relative time and simulation time. Orbit code will provide
simulation time, while derivatives are on orbit-relative time.
The code can give RF Monte Carlo kicks, both for
accelerated and non-accelerated orbit integration. The
accelerated scheme is particularly badly tested.

The interpolation of the RF wave field is still not
implemented; as a temporary solution the wave field is
always taken from coordinates with index (1,1).

The renormalisation of the electric field to keep RF power
constant is not implemented. This will require
communication between MPI-nodes.

dum_magnetic_field::local_field_from_dum_magnetic_field |
J magnetic_field_interface_to_RFOF::local_magnetic_field_interface_to_RFOF

RFOF_magnetic_field::get_local_magnetic_field r,

RFOF_main::RFOF_master

———=

L| RFOF_kick::RFkick_single_pass

_

RFOF_random_numbers::irand_uniform_varOmeanl RFOF_random_numbers::RM48 I

RFOF_main::split_RFstep_in_single_mode

l
\

/ _l RFOF_markers:alidate_new_marker |
>

:LRFOF_diagnostics ::add_kick_info_to_diagnostics RFOF_diagnostics::save2file_rf_kicks

| RFOF_kick::quasilinear_RF_kick_with_time_acceleration I

=|| RFOF_kick::coeff_RF_characteristic |

| RFOF_waves:get_rf_wave_local |

T RFOF_kick::move_marker_on_characteristic |

—I RFOF_random_numbers::gaussian_random_number

RFOF_kick::lperp_derivative

RFOF_kick::quasilinear_RF_MC_coeff } =|| RFOF_kick::quasilinear_RF_diffusion_coeff |

RFOF_numerics::add_to_sorted_list_3columns I

RFOF_resonance_condition::rf_wave_particles_resonance l—b{ RFOF_resonance_condition::close_enough_to_resonance }—b{ RFOF_resonance_condition::width_of_resonance_in_R I

>|| RFOF_numerics::eval_quadratic_polynomial I

\ RFOF_resonance_memory::estimate_resonance_|ocation |

| RFOF_resonance_condition::resonance_already_treated_in_previous_timestep l

j RFOF_numerics::polycoef_3points |

RFOF_numerics::solve_quadratic_polynomial_real_roots I

I RFOF_resonance_memory::storeNewPointResonanceMemory
RFOF_resonance_memory::storeNewPointResonanceMemorylLocation) l

Design and coupling to orbit code

ASCOT-main Interface: 3‘

Interface: o A ' —_

' ini constructor & ~
B-field loop

: __——>destructor O

. exit — O

J -

Workflow
contol

ReSOUance Acceleration
condition physics

~

Additional interfaces will be

LIBS:) >
WaveFields/ Constructors / required for parallelization;
ResonanceMemory/ Destructors .

Numerics/... * call RFOF renormiEfield

RFOF \ Interface MPI routines y

Coupling to ASCOT

RFOF now runs in ASCOT - thanks to Antti Salmi from ASCOT team!

Coupling was relatively easy: < 1 week of work

RFOF is generic — can’t use ASCOT specific types, instead:
= markers in RFOF are pointers to markers in ASCOT

(done once; then the same memory is used in RFOF and ASCOT)

» B-field is transferred via interface — wrapper to ASCOT routines

» wave fields transferred using pointers
= NOTE: No global variables in RFOF (except static variables)

Interpolation of wave field still not available
— instead ASCOT calls a dummy-constructor.

Changes to ASCOT:

1. Minor changes to main control routine (as shown to the right)
2. Implement initialise_ RFOF and deallocate RFOF

3. Implement interface for the magnetic field
4

Minor changes to the particle structure
(a few missing TARGETS added)

4 ASCOT: from MAIN N

CALL initialise_RFOF(prt(1),marker,mem,RFglobal,RFdiagno)

Il CALL RFOF module before collisions. Note: this is not

'l included in ASCINT(3) as bookkeeping of 'mem' and 'RFglobal’
Il and "'marker' is required. It seems also that initialisation
Il and time step control through ascint would become cumbersome.

pri¥gyrof= prt¥chargeSI * magn_bmagn / (prt¥loc¥lorenz * prt%md)
CALL RFOF_master(prt(1)%time%t+TSTEP, prt(1)%time¥t, &
RFglobal ,marker,mem,RFdiagno,mpivar_id, &
interactionFailedParticleOvershotResonance, &
timeAtResonance)
! RFOF can predict with high accuracy the time at the resonance.
! Use it to set additional limit on TSTEP.
RFtstep=timeAtResonance-(prt(1)%time%t+TSTEP)
IF (interactionFailedParticleOvershotResonance) THEN
! this still needs revision..
RFtstep=timeAtResonance-prt(1)%time%t
ERRFLG=50 ! go back to previous step and use TSTEP=RFtstep
GOTO 1600 ! jump to a place where redirection to 850 occurs
END IF

ASCOT: from magnetic_field ...

MODULE magnetic_field_interface_to_RFOF

CONTAINS
I> \fn local_magnetic_field_interface_to_RFOF
!> interface for RFOF to call magnetic field quantities
SUBROUTINE local_magnetic_field_interface_to_RFOF(R,phi,z, &

psi,theta,Bmod,F,psi_Estatic,dBmod_dpsi,dF_dpsi,dBmod_dtheta,dF_dtheta)

CALL store2file_RFOF_cumlative_diagnostics(RFdiagno,RFglobal)
\\EALL deallocate_RFOF(RFglobal ,mem,RFdiagno) 4//

(ASCOT: from interface_to RFOF

MODULE interface_to_RFOF
IMPLICIT NONE

CONTAINS

1> subroutine for initialising data structures used by RFOF
SUBROUTINE initialise_RFOF(prt,marker,mem,RFglobal,RFdiagno)

> subroutine for deallocating data structures used by RFOF
SUBROUTINE deallocate_RFOF(RFglobal,mem,RFdiagno))

.

Examples with ASCOT: resonance condition

The resonance condition, including the Dopper shift, is v =0, where: v = — nQC -Kev

Remember the time history v(t) allows one to extrapolate to find ¢ : v(t.s) = 0.
RFOF calculates ¢, R, and z,. ; see below how prediction gets better when we approach resonance. Predictions of
t.s allow ASCOT to adjust the time step to stop at the resonance.

Red dots: predictions of R, ((z,..) and R, (t.s)- Dark blue: orbit (R(t),z(),t). : lines from orbit to predicted

resonance.
"I | Orbit segment Full orbit Trapped |
| j,\ 2 056 32 ‘57 \ \ /\\ /\
02 2.95F .-“\ o2 2.95 '
o 285 0 285 |
Oz.a 2?9 3 3?1 3?2 33 2'80 S e 1 % 29 R[m]aj 32 33 o 1 f\me " s:]; 4 xw"f T E)
08 3Xxw/2Xx n¢ os} ° Tangent resonance | Resonance near turnlng pOInt
3 A | : L
TN TV 1) N |
E oo <) E o \ / E osf E o |
::?» /) l‘ 29F i\ \ : ." 29F / 3
- T I\ y =7 | -
27 28 29 R?m] 31 32 27, 2 — 27 28 29 R?m] 31 32 27 2 el 4)

Examples with ASCOT: RF acceleration

 Traditionally RF in orbit following codes has been computationally Simulations with ASCOT-RFOF

expensive; collisional time ~1s / bounce times ~10-°s

* Monte Carlo formulation by Eriksson and Schneider allows orbit

code to work in accelerated time

where]

2
D = ‘rRFleeEeﬁ‘

5

Eefj‘ = E+Jn—1 + E—Jn+1
Q 3
w
L=l 2
n 1/
‘]k = Jk(kip)
01 05

EEN(0,])

2DN , ..

' d (Ze Ze
du = —(—D)NACC +&5—
Jl\ m m
dE. nQ, du
s E o u
n
dP, =—dE
(00)
d(a) - nQC -k V) = () (condition for spatial displacement)

* ASCOT-RFOF simulations have been performed

* Example below: H minority in JET; time
simulated=4ms; Prf=20MW

* Unrealistic, but shows how RFOF drives fast ion tail
and turning points accumulate around the resonance

Fast ion pressure

Fast particle
pressure builds
up round the
resonance layer
(dashed line)

[
iel
=

O

[

-]
y—

c
iel
e

-
Q
=
0

T N
b H*\m
0 05 1
Pitch V| /v

Energy [keV]

DOXYGEN documentation

How to couple your orbit following code to RFOF from man-page

1. Generate the data structure needed in RFOF. These are NOT global and your code has to keep track of
them (keep your pointers until data is deallcocated). RFOF provides constructors for these data structures:

o THE MARKERS: The marker structure are set in the subroutine set_marker_pointers in the
module RFOF_markers. The markers data, e.g. v-parallel and psi, are all stored as pointer to your
internal markers; i.e. both your code RFOF access the same memory and changes set in RFOF are
immediately seen in your code, ad vice versa. This routine therefore require you to provide TARGETs
for all marker variables. It also means that this structure is set only once per marker.

o THE RESONANCE MEMORY: In order to evaluate the wave-particle interaction strength you need to
know the time derivative of the cyclotron frequency of the marker, thus the short term time-history
of the particle needs to be stored. This is the perpose of the "resonance-memory". The memory is
contructed by the subroutine constructor_rf_resonance_memory_matrix in the module
RFOF_resonance_memory. Note that this memory is specific for each particle and has to be reset
every time you switch to tracing a new particle. To reset the memory use the subroutine
reset_rf_resonance_memory matrix in the module RFOF_resonance_memory.

o THE RF WAVE FIELD: The RF wave field is handled entirely inside RFOF. The contructor is
dummy_rf_wave_field in the module RFOF_resonance_memory. At the moment this constructor
generates a dummy field with constant components over the entire plasma.

o THE RF-INTERACTION DIAGNOSTICS: The diagnostics is handled entirely inside RFOF. The contructor
is contructor RFOF_cumlative_diagnostics in the module RFOF_diagnostics.

2. Write a subroutine to provide RFOF with your magnetic field data. The subroutine should be called

~ Fiald intavfara +A DENC and tha intavfaca fav thi

laral mn

real(8) RFOF_kick:quasilinear_RF_diffusion_coeff (type(particle),intent(in)
type(rf_wave_local),intent(in)

e mivan halaw,

marker,
RFlocal,
type(resonance_memory),intent(in) mem

)

function quasilinear_RF_diffusion_coeff(marker,RFlocal,mem) result(diffusion)

Quasilinear diffusion coefficient for resonant interactions between RF wave field and charged particle in an
inhomogeous magnetic field. This is a local operator given by the local magnetic fields and wave quantities and
their time derivatives in the frame of the particles.

The diffusion coefficient in I, is:
1 2
D= 3 |7 Zevy Eap¢|

See [L.-G. Eriksson, Nuclear Fusion, 2005]

Attention:
dIperp is in units [MeV].

INPUT
Parameters:

marker Properties of the marker (weight, mass, charge, velocity...)
RFlocal Local properties of the RF wave field (|B|, RBg,...)

mem Short term memory of the resonance condition along the orbit

Ex. documentation of function

OUTPUT

Parameters:
diffusion (out) Quasilinear scattering coefficient : D =< dI,dI, > during one crossing of the

Summary

RFOF (RF library for Orbit Following Monte Carlo codes)
is under development within IMP5/ACT4 to provide
detailed RF model

*The model allows time-accelerated orbit tracing; thus
much faster than previous orbit-following RF codes

*RFOF has a generic interface to allow coupling to
different orbit codes

*Much of RFOF is already written

Finding resonance positions, give RF kicks

To do: resonance positions with time acceleration;
renormalize E-field to keep power constant...

*Coupling to ASCOT well advanced

Resonance found

Predicted resonances used to set future time steps in
ASCOT

First tests of RF-kicks were promising

First simulation showing RFOF driving fast ion tail

*Future work:

Finish missing parts of physics model / testing
Improved diagnostics
Coupling to orbit code SPOT

resonance.

[> Here is the call graph for this function:

RFOF_kick::Iperp_derivative |
H | RFOF_kick::quasilinear RF_MC_coeff

b Here is the caller graph for this function:

vl RFOF_kick::quasilinear_RF_diffusion_coeff }—b' RFOF_kick::max_RFkick_in_single_pass l—b‘ RFOF_kick::tau_RF_phase_integral

