
Background
Lack of Fokker-Planck code in community able to model fast ions from ICRF, NBI and fusion reactions, including wide
guiding centre orbits. Priority support was allocated to develop such a code. But what type of code should be built?
•  Monte Carlo / Finite difference / Finite element
•  Orbit averaged / Orbit following

This poster concerns:
•  Progress on generic RF operator; RFOF - Radio Frequency Monte Carlo Library for Orbit Following Codes
•  First results from coupling with ASCOT

Traditional disadvantage with orbit following Monte Carlo for RF:
•  Quasilinear evolution on slowing down time scales (~1s), while orbit tracing resolves fractions of bounce time (10-5s)
•  Orbit averaged codes can take up to 1000 longer time steps
However, a new Monte Carlo operator [L.-G. Eriksson et al, Phys. Plasmas 12, 072524 (2005)] will allow RFOF to work

with accelerated orbit time integration, i.e. let one orbit represent NACC orbits, as is commonly done in NBI codes like
NUBEAM/ASCOT/SPOT. This will make CPU times for orbit following / orbit averaged codes of the same order.

Decision: Extend available codes by adding ICRF
•  SPOT & ASCOT: Orbit following Monte Carlo – add ICRF
•  FIDIT: Orbit averaged finite difference – add ICRF

This poster!

ASCOT and SPOT solve Fokker-Planck equation by separate orbit tracing / collision / RF interaction:

These codes assume time step to be small and operators commute and can be added sequentially

This allows RFOF to be independent of both orbit tracing and collisions

RFOF is being written to be a generic library; should be possible to couple to any orbit code

INPUT:
•  Marker/particle properties (r,v); set at initialisation to be pointer to marker, i.e. set only once per marker!

•  RF-wave field; only pointers passed between routines, RF-wave stored as ITM cpo Waves

•  Magnetic field; provided to RFOF through interface to subroutine, i.e. wrapper needed to interpolation
routines inside orbit code

OUTPUT:

•  Updated marker properties, after acceleration by RF wave

•  Prediction of the time of future resonances; allow orbit traces to adjust time step to end at the resonance
o  In case the orbit step was too long and marker crossed resonance without RF kick; then return expected

time of resonance to allow orbit solver to redo time step

Integration of RF operator in orbit following code

Orbit tracing Collisions RF acceleration

 Workflow of RFOF
•  Initialise and allocate data structures for RFOF
•  In orbit code: after each step on orbit call RFOF

1.  RFOF evaluates resonance condition

2.  FOR ”waves resonant with particle”
  Give RF kick

3.  ENDFOR
4.  RETURN:

  MARKER: Updated particle

  TIME_AT_RESONANCE
(prediction: next resonance /
missed resonance)

•  Output diagnostics & deallocate memory

 CODE STATUS (from documentation)
•  The code can find the resonance position for non-

accelerated schemes; i.e. judge if particle is in resonance
and predict the time and position of future and past
resonance. For time-acceleration we have to separate orbit-
relative time and simulation time. Orbit code will provide
simulation time, while derivatives are on orbit-relative time.

•  The code can give RF Monte Carlo kicks, both for
accelerated and non-accelerated orbit integration. The
accelerated scheme is particularly badly tested.

•  The interpolation of the RF wave field is still not
implemented; as a temporary solution the wave field is
always taken from coordinates with index (1,1).

•  The renormalisation of the electric field to keep RF power
constant is not implemented. This will require
communication between MPI-nodes.

ASCOT-main
•  init!
•  loop!
•  exit!

O
rbit code

4

Workflow
contol

Resonance
condition

Constructors /
Destructors

Acceleration
physics

LIBS:
WaveFields/

ResonanceMemory/
Numerics/…

RFOF

Interface:
B-field

Interface:
constructor &
destructor

Additional interfaces will be
required for parallelization;

•  call RFOF_renormEfield!
•  Interface MPI routines

Design and coupling to orbit code

Coupling to ASCOT
RFOF now runs in ASCOT – thanks to Antti Salmi from ASCOT team!
Coupling was relatively easy: < 1 week of work

RFOF is generic – can’t use ASCOT specific types, instead:
  markers in RFOF are pointers to markers in ASCOT

(done once; then the same memory is used in RFOF and ASCOT)

  B-field is transferred via interface – wrapper to ASCOT routines
  wave fields transferred using pointers

  NOTE: No global variables in RFOF (except static variables)
Interpolation of wave field still not available
 – instead ASCOT calls a dummy-constructor.

Changes to ASCOT:

1.  Minor changes to main control routine (as shown to the right)
2.  Implement initialise_RFOF and deallocate_RFOF

3.  Implement interface for the magnetic field

4.  Minor changes to the particle structure
(a few missing TARGETS added)

…

…

…

…

ASCOT: from MAIN

ASCOT: from magnetic_field_...

…

ASCOT: from interface_to_RFOF

Examples with ASCOT: resonance condition
The resonance condition, including the Dopper shift, is ν = 0, where:

Remember the time history ν(t) allows one to extrapolate to find tres : ν(tres) = 0.
RFOF calculates tres, Rres, and zres ; see below how prediction gets better when we approach resonance. Predictions of
tres allow ASCOT to adjust the time step to stop at the resonance.

Red dots: predictions of Rres(zres) and Rres (tres). Dark blue: orbit (R(t),z(t),t). Light blue: lines from orbit to predicted
resonance.

Orbit segment Full orbit

3 x ω / 2 x nφ	

 Tangent resonance Resonance near turning point

Trapped

Examples with ASCOT: RF acceleration
•  Traditionally RF in orbit following codes has been computationally

expensive; collisional time ~1s / bounce times ~10-5 s

•  Monte Carlo formulation by Eriksson and Schneider allows orbit
code to work in accelerated time

where

Pitch v|| / v

D

€

dµ =
∂
∂I⊥

Ze
m
D

⎛

⎝
⎜

⎞

⎠
⎟ NACC + ξ

Ze
m

2DNACC

dE
E

=
nΩc

ω
dµ
µ

dPφ =
nφ
ω
dE

d ω − nΩc −k • v() = 0

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪ (condition for spatial displacement)

 Simulations with ASCOT-RFOF
•  ASCOT-RFOF simulations have been performed
•  Example below: H minority in JET; time

simulated=4ms; Prf=20MW

•  Unrealistic, but shows how RFOF drives fast ion tail
and turning points accumulate around the resonance

Energy [keV]

D
is

tri
bu

tio
n

fu
nc

tio
n

€

D = τRFv⊥ZeEeff

2

€

Eeff = E+Jn−1 + E−Jn+1

€

Jk = Jk (k⊥ρ)

€

I⊥ =
ω
nΩ

Bµ

€

ξ∈N(0,1)

Fast particle
pressure builds
up round the
resonance layer
(dashed line)

Fast ion pressure

0

1

-1

3.0 3.5

z
[m

]

R [m]

DOXYGEN documentation Summary
RFOF (RF library for Orbit Following Monte Carlo codes)
is under development within IMP5/ACT4 to provide
detailed RF model

• The model allows time-accelerated orbit tracing; thus
much faster than previous orbit-following RF codes

• RFOF has a generic interface to allow coupling to
different orbit codes

• Much of RFOF is already written

•  Finding resonance positions, give RF kicks

•  To do: resonance positions with time acceleration;
renormalize E-field to keep power constant…

• Coupling to ASCOT well advanced

•  Resonance found

•  Predicted resonances used to set future time steps in
ASCOT

•  First tests of RF-kicks were promising

•  First simulation showing RFOF driving fast ion tail

• Future work:

•  Finish missing parts of physics model / testing

•  Improved diagnostics

•  Coupling to orbit code SPOT

from man-page

E
x.

 d
oc

um
en

ta
tio

n
of

 fu
nc

tio
n

