
Report: Application of the Parareal
Algorithm to SOLPS

December, 2014	

Debasmita Samaddar1,	

 	

2 - Max-Planck-Institut für Plasmaphysik,

Germany	

	

David Coster2,	

Wael R. Elwasif4,	

 Lee A. Berry4,	

 Donald B. Batchelor4	

3 – CNRS-LIMHP, Université Paris 13,
France	

Xavier Bonnin3,	

 	

1 – EURATOM/CCFE, Culham Science Centre, UK	

	

Christoph Bergmeister1,	

 	

4 – ORNL, USA	

	

Eva Havlickova1,	

“Take Home Message”

• Parareal algorithm parallelizes the time domain - is an
innovative technique that may be applied for parallelization
to achieve computational speedup.

ALGORITHM SHOWN TO WORK FOR EDGE
PHYSICS CODE - SOLPS, FOR TOKAMAK
SIMULATIONS.

Outline

v Motivation
v Overview of algorithm

v SOLPS results

v Frameworks and parareal scheme

v Conclusion

Motivation

• Simulations of fusion plasma are numerically

very challenging. SOLPS with B2-Eirene is a good

example!

• Space parallelization is not enough.

• Is time parallelization an option? Well, parareal

algorithm has helped in achieving significant

speedup in cases already studied.

 Parareal Algorithm -
a quick overview

Parareal Algorithm : Distinct in many ways

• Algorithm first proposed by Lions et al. in 2001.
• Parallelizes in time, despite the sequential nature of
the time domain.
• Very non-intuitive as this is an initial value problem,
and the result of each time step should depend on
that of the previous timestep. However, in this case,
“timesteps” (chunks) are solved in parallel.
• Uses predictor - corrector approach.

Actual	

1st G	

1st F	

2nd G	

2nd F	

3rd G	

3rd F	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

en
er

gy
 (t

)	

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator
Solvers G & F alternate

New G Old G

Time	

}	

 }	

 }	

 }	

 }	

 }	

P0	

 P4	

P3	

P2	

P1	

 P5	

Success of Algorithm Depends on
Multiple Factors

• k<<N.
G is much cheaper than F.

• Despite solutions being very sensitive to initial conditions for -
it is possible to choose G.

• “Good” G: Solutions converge • “Bad” G: Solutions diverge

• No “fixed recipe” for G !

 Algorithm always converges if k=N.
But, success in achieving significant speedup if

Selecting Optimum Coarse Solver is
Important

• Some of the physics may be ignored when solving
with G, to achieve speedup.
• G can be same as F, but may be solved over a
coarser k-mesh (or spatial grid).
• G may be same as F, but may be solved with a larger
timestep (dt) and less accuracy.
• Use a different G.

Different approaches can/should be explored to find G.
Any one of them, or a combination of them, may work :

Results of Application to SOLPS :
Scrape Off Layer Plasma Simulator

Parareal application: features

• Parareal convergence based on pwmxip and pwmxap
(maximum total power fluxes inboard & outboard
divertor, respectively).
• Parareal correction to: na, ne, te, ti, ua and
po (the primary variables of the code).
• Eirene uses Monte Carlo treatment of neutral particle
transport solving Boltzman equation for distribution
functions for neutrals.

 Results –
G or coarse solver: Replace Eirene with

fluid neutrals model (faster computation):

Conclusion:	
 The	

parareal	
 solu,on	

matches	
 the	
 serial	

solu,on.	

Fine	
 (serial)	
 solu,on	
 Coarse	
 es,mate	

Parareal	

solu,on	

Results: Electron temperature at separatrix

Conclusion:	
 The	

parareal	
 solu,on	

matches	
 the	
 serial	

solu,on.	

Fine	
 (serial)	
 solu,on	
 Coarse	
 es,mate	

Parareal	

solu,on	

Results: Electron density at separatrix

Computa/onal	
 gain	
 =	
 12.58	
 with	
 240	
 processors	
 (may	

increase	
 with	
 processors!)	

Fine	
 (serial)	
 solu,on	

Results: Maximum flux of the total power inboard the divertor :

Parareal	
 solu,on	

Solu/ons	
 converge	
 with	
 increasing	
 k.	

Parareal works perfectly with timeslice per processors =10

Coarse	
 es/mate	
 deviates	
 too	
 far	
 from	
 fine	
 solu/on?	

Parareal fails with timeslice per processors >10

Fine	
 solu,on	
 for	
 different	
 k,	

with	
 ,meslice=40	

Coarse	
 es,mate	

!

Fine	
 solu/on	
 not	
 allowed	
 to	
 evolve	
 enough?	

Parareal fails with timeslice per processors <10

Fine	
 solu,on	
 for	
 different	
 k,	
 with	
 ,meslice=5	

!

 Results –

G or coarse solver: Reduced grid
(2 studies: MAST & DIIID):

Can	
 experience	
 gathered	
 with	
 previous	
 cases	
 be	
 helpful	

now?	

b)Fine grid 96X36:
DIIID Coarse grids:
48X36, 32X36	

Parareal converges with varying coarse grid sizes
a)Fine grid 150X36:
MAST.	

Coarse grids: 150X18,
76X36, 76X18	

CFL condition allows bigger dt with reduced grid sizes.	

Reduced	
 grid:	
 150X18	

Gain=4.9	
 with	
 32	

processors.	

	
 Convergence	
 at	
 k	
 =	
 4	

dt_g	
 =	
 10dt_f	

Fine solution for different k, with fine timeslice=20:	

Parareal convergence & gain depend on size of time slice per processor - DIIID

DIIID case :	

NTIMF = # of Fine
timesteps.	

NTIMG = # of Coarse
timesteps.	

Gain improves with increasing NTIMF for same NTIMG 	

Fine	
 grid:	
 96X36,	
 Reduced	
 grid:	
 48X36,	
 dtG=30dtF	

Gain=21.8	
 with	
 96	
 processors.	

	

Parareal convergence & gain depend on size of time slice per processor - MAST

MAST case :	

Gain improves with increasing NTIMF for same NTIMG 	

Fine	
 grid:	
 150X36,	
 Reduced	
 grid:	
 150X18,	
 dtG=32dtF,	
 dtF=256	
 	

Gain=15.9	
 with	
 64	
 processors.	

	

Computational gain may be optimized by scaling studies
DIIID :	

Weak scaling: Gain may be
maximized by optimising
NTIMF / NTIMG	

Strong scaling: Gain
will reduce for high
processor number as
NTIMF & NTIMG
reduce significantly.	

Parareal Algorithm
Using the IPS Framework

Advantages of using the IPS Framework

• portable parareal framework (L.Berry, W. Elwasif, ORNL)

–written in python.

• exploring multiple cases with relative ease.

• hybrid parallelization (space + time).

• Less focus on numerics of parareal scheme.

• Prime focus on coarse solver.

• Reuse of processors already having attained convergence.

Using	
 IPS-­‐parareal	
 is	
 way	
 beVer	
 than	
 tradi/onal	
 MPI	

implementa/on!	

Event based implementation greatly enhances performance

Case:	
 “G	
 with	
 no	
 Eirene”.	

Event	
 based	
 parareal	
 implementa,on	
 using	
 the	
 IPS	

framework	
 greatly	
 improves	
 resource	
 u,liza,on	
 as	
 well	
 as	

gain.	

Conclusions
• Parareal algorithm may be successfully applied to edge physics simulations, hence
studies of the scrape off layer may become more tractable.

• For case with “no Eirene in G”, a gain of 12.58 was observed with 240
processors.

• Another coarse solver, G is explored where the grid size and bigger dt are
reduced – for MAST & DIIID simulations.

• DIIID: Gain=21.8 with 96 processors & MAST: Gain=15.9 with 64 processors
were observed.

• For both coarse solvers, convergence is sensitive to the size of time slices per
processor.

• Time parallelization may be coupled with space parallelization to yield maximum
gain and efficiency.

• IPS framework (from ORNL) greatly simplifies the use of the scheme and
enhances performance.

Acknowled!ments:	

"  Consultants at ITM-Gateway.

"  WP13-SOL-01-01/CCFE/PS funding from EFDA.

References

•  Lions J. L et al, C.R. Acad. Sci. Paris, Serie I, 332 (2001), pp.
661668
•  Samaddar D. et al, J. Comp Phys,18 (229) (2010)
•  Schneider, R. et al, Contrib. Plasma Phys. 46, No. 1-2,3-191
(2006)
•  Berry, L. A. et. al, Journal of Computational Physics 231(2012)
59455954
•  Elwasif W.R et al, 4th IEEE Workshop on Many-Task
Computing on Grids and Supercomputers, MTAGS 2011, (2011)

Thank you

Reduced	
 grid:	

150X18	

Gain=12.536	
 with	
 32	

processors!!	

Parareal converges with fine timeslice per processors =100

Fine	
 solu,on	
 for	
 different	
 k,	
 with	
 fine	
 ,meslice=100.	
 	

Convergence	
 at	
 k	
 =	
 2	

dt_g	
 =	
 50dt_f	

Convergence	
 in	
 12	
 itera/ons,	
 irrespec/ve	
 of	
 processor	

numbers.	

Weak scaling (no Eirene)

SOLPS – code used for edge physics studies
• Package consists of 2 codes:
B2(plasma fluid transport) and
Eirene(neutral particle transport).
• Parallel and perpendicular
transport described in 2D system.
• SOL – characterized by open
field lines at surfaces of device
and atomic processes are
important.
• SOLPS – widely used to
understand physics of SOL.
• SOLPS – extremely
computationally intensive.

geometry
- toroidal symmetry
-  e q u a t i o n s w r i t t e n i n

curv l i near coord inates
coinciding with magnetic
geometry

physical plane computational

 plane

Equations in SOLPS
transport equations

continuity ions

parallel momentum ions

ExB & diffusive (ambipolar)
inertial, viscous
ion-neut. friction
diamagnetic

c u r v l i n e a r
coordinates

metric coefficients
geometry

flow

… Equations in SOLPS continued
current continuity

energy conservation ions and electrons

Advantages of using a parareal framework

(contd …)

Event based
implementation
gives much better
gain.

Ref: L. A. Berry et al. (2011)	

• Opportunity to use event based parareal
scheme, leading to multilevel concurrency and
more flexibility with G.

Advantages of using a parareal framework

(contd …)
• “Moving Window” parareal scheme allows even
better resource utilization (Elwasif et al. 2011).

Regular, event-based
parareal

“Moving window” scheme

Actual	

en
er

gy
 (t

)	

Time	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

F is a propagator evolving the state, λ. The function,
energy(λ,t) thus changes from initial time, t0,to a later
time ...

Actual	

en
er

gy
 (t

)	

Time	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

F is a propagator evolving the state, λ. The function,
energy(λ,t) thus changes from initial time, t0,to a later
time ...

}	

 }	

 }	

 }	

 }	

 }	

P0	

 P4	

P3	

P2	

P1	

 P5	

Actual	

1st G	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

en
er

gy
 (t

)	

F is a propagator evolving the state, λ. The function,
energy(λ,t) thus changes from initial time, t0,to a later
time ...
G - faster but inaccurate propagator

Time	

}	

 }	

 }	

 }	

 }	

 }	

P0	

 P4	

P3	

P2	

P1	

 P5	

Actual	

1st G	

1st F	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

en
er

gy
 (t

)	

F is a propagator evolving the state, λ. The function,
energy(λ,t) thus changes from initial time, t0,to a later
time ...
G - faster but inaccurate propagator

Time	

}	

 }	

 }	

 }	

 }	

 }	

P0	

 P4	

P3	

P2	

P1	

 P5	

Actual	

1st G	

1st F	

2nd G	

2nd F	

3rd G	

3rd F	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

en
er

gy
 (t

)	

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator
Solvers G & F alternate

New G Old G

Time	

}	

 }	

 }	

 }	

 }	

 }	

P0	

 P4	

P3	

P2	

P1	

 P5	

Actual	

1st G	

1st F	

2nd G	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

en
er

gy
 (t

)	

F is a propagator evolving the state, λ. The function,
energy(λ,t) thus changes from initial time, t0,to a later
time ... G - faster but inaccurate propagator. Solvers G
& F alternate.

New G Old G

Time	

}	

 }	

 }	

 }	

 }	

 }	

P0	

 P4	

P3	

P2	

P1	

 P5	

Actual	

1st G	

1st F	

2nd G	

2nd F	

3rd G	

3rd F	

t
0	

t
1	

t
2	

t
3	

t
4	

t
5	

t
6	

en
er

gy
 (t

)	

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator
Solvers G & F alternate

New G Old G

Time	

}	

 }	

 }	

 }	

 }	

 }	

P0	

 P4	

P3	

P2	

P1	

 P5	

i = 0 to (N-1)	

. . .

Check Convergence	

k = k + 1	

i = 0 to (N-1)	

k = 0 to (N-1),	

Basic Algorithm

Metric for convergence:

3. BENCHMARKING SOLF1D WITH SOLPS	

	

 	

E. Havlickova, JET Modelling Meeting, 26th June 2012

 SOLPS with no drifts and

additional parallel viscosity
driven by ion heat flux

3. BENCHMARKING SOLF1D WITH SOLPS	

	

 	

E. Havlickova, JET Modelling Meeting, 26th June 2012

 SOLPS with no drifts and

Error tolerance was set at 5E-3

The	
 error	
 starts	
 to	

oscillate	
 for	
 values	

lower	
 than	
 ~5E-­‐3	
 	

Note:	
 The	
 simula/ons	
 were	
 done	
 on	
 the	
 ITM	
 gateway	
 with	
 16	
 cores	
 per	

node.	
 But	
 when	
 all	
 cores	
 per	
 node	
 were	
 used	
 simultaneously,	
 the	
 resul/ng	

restric/on	
 on	
 the	
 memory	
 available	
 per	
 core	
 slowed	
 the	
 simula/on.	
 It	
 was	

observed	
 that	
 with	
 each	
 processor	
 solving	
 a	
 /meslice	
 of	
 10	
 (i.e,	

b2mndr_n/m=10),	
 using	
 8	
 cores	
 per	
 node	
 was	
 op/mum	
 for	
 the	
 cases	

inves/gated.	

