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“Take Home Message” 

• Parareal algorithm parallelizes the time domain - is an 
innovative technique that may be applied for parallelization 
to achieve computational speedup. 
 

ALGORITHM SHOWN TO WORK FOR EDGE 
PHYSICS CODE - SOLPS, FOR TOKAMAK 
SIMULATIONS. 
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Motivation 

• Simulations of fusion plasma are numerically 

very challenging. SOLPS with B2-Eirene is a good 

example! 

• Space parallelization is not enough.  

• Is time parallelization an option? Well, parareal 

algorithm has helped in achieving significant 

speedup in cases already studied.                                                             



  Parareal Algorithm -  
a quick overview 



Parareal Algorithm : Distinct in many ways 

• Algorithm first proposed by Lions et al. in 2001. 
• Parallelizes in time, despite the sequential nature of 
the time domain.  
• Very non-intuitive as this is an initial value problem, 
and the result of each time step should depend on 
that of the previous timestep. However, in this case, 
“timesteps” (chunks) are solved in parallel. 
• Uses predictor - corrector approach. 



Actual	


1st G	


1st F	


2nd G	


2nd F	


3rd G	


3rd F	



t
0	



t
1	



t
2	



t
3	



t
4	



t
5	



t
6	



en
er

gy
 (t

)	



F is a propagator evolving the function (energy(t)) from 
initial time, t0, to a later time ... 
G - faster but inaccurate propagator  
Solvers G & F alternate 
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Success of Algorithm Depends on 
Multiple Factors  

• k<<N. 
G is much cheaper than F. 
   

• Despite solutions being very sensitive to initial conditions for - 
it is possible to choose G.  

• “Good” G: Solutions converge • “Bad” G: Solutions diverge   

• No “fixed recipe” for G ! 

 Algorithm always converges if k=N.  
But, success in achieving significant speedup if 



Selecting Optimum Coarse Solver is 
Important  

• Some of the physics may be ignored when solving 
with G, to achieve speedup.  
• G can be same as F, but may be solved over a 
coarser k-mesh (or spatial grid). 
• G may be same as F, but may be solved with a larger 
timestep (dt) and less accuracy. 
• Use a different G. 

Different approaches can/should be explored to find G. 
Any one of them, or a combination of them, may work : 
 



Results of Application to SOLPS : 
Scrape Off Layer Plasma Simulator 



Parareal application: features 

• Parareal convergence based on pwmxip and pwmxap 
(maximum total power fluxes inboard & outboard 
divertor, respectively). 
• Parareal correction to: na, ne, te, ti, ua and 
po (the primary variables of the code). 
• Eirene uses Monte Carlo treatment of neutral particle 
transport solving Boltzman equation for distribution 
functions for neutrals. 



  Results –  
G or coarse solver: Replace Eirene with 

fluid neutrals model (faster computation): 
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Computa/onal	
  gain	
  =	
  12.58	
  with	
  240	
  processors	
  (may	
  
increase	
  with	
  processors!)	
  

Fine	
  (serial)	
  solu,on	
  

Results: Maximum flux of the total power inboard the divertor : 

Parareal	
  solu,on	
  



Solu/ons	
  converge	
  with	
  increasing	
  k.	
  

Parareal works perfectly with timeslice per processors =10 



Coarse	
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Parareal fails with timeslice per processors >10 
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Fine	
  solu/on	
  not	
  allowed	
  to	
  evolve	
  enough?	
  

Parareal fails with timeslice per processors <10 

Fine	
  solu,on	
  for	
  different	
  k,	
  with	
  ,meslice=5	
  
!



  Results –  
 

G or coarse solver: Reduced grid 
(2 studies: MAST & DIIID): 

Can	
  experience	
  gathered	
  with	
  previous	
  cases	
  be	
  helpful	
  
now?	
  



b)Fine grid 96X36: 
DIIID Coarse grids: 
48X36, 32X36	



Parareal converges with varying coarse grid sizes 
a)Fine grid 150X36: 
MAST.	


Coarse grids: 150X18, 
76X36, 76X18	


CFL condition allows bigger dt with reduced grid sizes.	



Reduced	
  grid:	
  150X18	
  
Gain=4.9	
  with	
  32	
  

processors.	
  
	
  Convergence	
  at	
  k	
  =	
  4	
  

dt_g	
  =	
  10dt_f	
  

Fine solution for different k, with fine timeslice=20:	





Parareal convergence & gain depend on size of time slice per processor - DIIID 

DIIID case :	


NTIMF = # of Fine 
timesteps.	


NTIMG = # of Coarse 
timesteps.	



Gain improves with increasing NTIMF for same NTIMG 	


Fine	
  grid:	
  96X36,	
  Reduced	
  grid:	
  48X36,	
  dtG=30dtF	
  

Gain=21.8	
  with	
  96	
  processors.	
  
	
  



Parareal convergence & gain depend on size of time slice per processor - MAST 

MAST case :	



Gain improves with increasing NTIMF for same NTIMG 	


Fine	
  grid:	
  150X36,	
  Reduced	
  grid:	
  150X18,	
  dtG=32dtF,	
  dtF=256	
  	
  

Gain=15.9	
  with	
  64	
  processors.	
  
	
  



Computational gain may be optimized by scaling studies 
DIIID :	



Weak scaling: Gain may be 
maximized by optimising 
NTIMF / NTIMG	



Strong scaling: Gain 
will reduce for high 
processor number as 
NTIMF  & NTIMG 
reduce significantly.	





Parareal Algorithm 
Using the IPS Framework 



Advantages of using the IPS Framework 

• portable parareal framework (L.Berry, W. Elwasif, ORNL) 

–written in python. 

• exploring multiple cases with relative ease. 

• hybrid parallelization (space + time). 

• Less focus on numerics of parareal scheme. 

• Prime focus on coarse solver. 

• Reuse of processors already having attained convergence. 
 



Using	
  IPS-­‐parareal	
  is	
  way	
  beVer	
  than	
  tradi/onal	
  MPI	
  
implementa/on!	
  

Event based implementation greatly enhances performance 

Case:	
  “G	
  with	
  no	
  Eirene”.	
  

Event	
  based	
  parareal	
  implementa,on	
  using	
  the	
  IPS	
  
framework	
  greatly	
  improves	
  resource	
  u,liza,on	
  as	
  well	
  as	
  

gain.	
  



Conclusions 
• Parareal algorithm may be successfully applied to edge physics simulations, hence 
studies of the scrape off layer may become more tractable. 

• For case with “no Eirene in G”, a gain of 12.58 was observed with 240 
processors.  

• Another coarse solver, G is explored where the grid size and bigger dt are 
reduced – for MAST & DIIID simulations.  

• DIIID: Gain=21.8 with 96 processors & MAST: Gain=15.9 with 64 processors 
were observed. 

• For both coarse solvers, convergence is sensitive to the size of time slices per 
processor. 

• Time parallelization may be coupled with space parallelization to yield maximum 
gain and efficiency. 

• IPS framework (from ORNL) greatly simplifies the use of the scheme and 
enhances performance. 
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Reduced	
  grid:	
  
150X18	
  

Gain=12.536	
  with	
  32	
  
processors!!	
  

Parareal converges with fine timeslice per processors =100 

Fine	
  solu,on	
  for	
  different	
  k,	
  with	
  fine	
  ,meslice=100.	
  	
  
Convergence	
  at	
  k	
  =	
  2	
  

dt_g	
  =	
  50dt_f	
  



Convergence	
  in	
  12	
  itera/ons,	
  irrespec/ve	
  of	
  processor	
  
numbers.	
  

Weak scaling (no Eirene) 



SOLPS – code used for edge physics studies 
• Package consists of 2 codes: 
B2(plasma fluid transport) and 
Eirene(neutral particle transport). 
• Parallel and perpendicular 
transport described in 2D system. 
• SOL – characterized by open 
field lines at surfaces of device 
and atomic processes are 
important. 
• SOLPS – widely used to 
understand physics of SOL. 
• SOLPS – extremely 
computationally intensive. 

geometry 
- toroidal symmetry 
-  e q u a t i o n s w r i t t e n i n 

curv l i near coord inates 
coinciding with magnetic 
geometry 

 
 
 
physical plane           computational                          

   plane 



Equations in SOLPS 
transport equations 

continuity ions 
 
 
 
 
 
 
 
parallel momentum ions 
 

ExB & diffusive (ambipolar) 
inertial, viscous 
ion-neut. friction 
diamagnetic 

c u r v l i n e a r 
coordinates 

metric coefficients 
geometry 

flow 



… Equations in SOLPS continued 
current continuity 
 
 
 
 
 

energy conservation ions and electrons 
 



Advantages of using a parareal framework  
 

(contd …) 

Event based 
implementation 
gives much better 
gain. 

Ref: L. A. Berry et al. (2011)	



• Opportunity to use event based parareal 
scheme, leading to multilevel concurrency and 
more flexibility with G. 
 



Advantages of using a parareal framework  
 

(contd …) 
• “Moving Window” parareal scheme allows even 
better resource utilization (Elwasif et al. 2011). 

Regular, event-based 
parareal 

“Moving window” scheme 
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F is a propagator evolving the state, λ. The function, 
energy(λ,t) thus changes from initial time, t0,to a later 
time ... 
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F is a propagator evolving the state, λ. The function, 
energy(λ,t) thus changes from initial time, t0,to a later 
time ... 
G - faster but inaccurate propagator  
 

Time	



}	

 }	

 }	

 }	

 }	

 }	



P0	

 P4	

P3	

P2	

P1	

 P5	





Actual	


1st G	


1st F	



t
0	



t
1	



t
2	



t
3	



t
4	



t
5	



t
6	



en
er

gy
 (t

)	



F is a propagator evolving the state, λ. The function, 
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F is a propagator evolving the function (energy(t)) from 
initial time, t0, to a later time ... 
G - faster but inaccurate propagator  
Solvers G & F alternate 
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F is a propagator evolving the state, λ. The function, 
energy(λ,t) thus changes from initial time, t0,to a later 
time ... G - faster but inaccurate propagator. Solvers G 
& F alternate. 
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F is a propagator evolving the function (energy(t)) from 
initial time, t0, to a later time ... 
G - faster but inaccurate propagator  
Solvers G & F alternate 
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i = 0 to (N-1)	



. . . 

Check Convergence	



k = k + 1	



i = 0 to (N-1)	



k = 0 to (N-1),	


Basic Algorithm 

Metric for convergence: 



3. BENCHMARKING SOLF1D WITH SOLPS	



	


 	



E. Havlickova, JET Modelling Meeting, 26th June 2012 

 SOLPS with no drifts and  
 

additional parallel viscosity 
driven by ion heat flux 



3. BENCHMARKING SOLF1D WITH SOLPS	



	


 	



E. Havlickova, JET Modelling Meeting, 26th June 2012 

 SOLPS with no drifts and  
 



Error tolerance was set at 5E-3 

The	
  error	
  starts	
  to	
  
oscillate	
  for	
  values	
  
lower	
  than	
  ~5E-­‐3	
  	
  

Note:	
  The	
  simula/ons	
  were	
  done	
  on	
  the	
  ITM	
  gateway	
  with	
  16	
  cores	
  per	
  
node.	
  But	
  when	
  all	
  cores	
  per	
  node	
  were	
  used	
  simultaneously,	
  the	
  resul/ng	
  
restric/on	
  on	
  the	
  memory	
  available	
  per	
  core	
  slowed	
  the	
  simula/on.	
  It	
  was	
  

observed	
  that	
  with	
  each	
  processor	
  solving	
  a	
  /meslice	
  of	
  10	
  (i.e,	
  
b2mndr_n/m=10),	
  using	
  8	
  cores	
  per	
  node	
  was	
  op/mum	
  for	
  the	
  cases	
  

inves/gated.	
  


