EFDA

Task Force
INTEGRATED TOKAMAK MODELLING

Validation and verification of the European Transport Solver
 D. Kalupin ${ }^{[1]}$, G. Pereverzev ${ }^{[2]}$, D. Coster ${ }^{[2]}$, R.Stankiewicz ${ }^{[3]}$, I. Ivanova-Stanik ${ }^{[3]}$, V. Basiuk ${ }^{[4]}$, Ph. Huynh ${ }^{[4]}$, J. Ferreira ${ }^{[5]}$, A. Figueiredo ${ }^{[5]}$, L. L. Alves ${ }^{[5]}$, J. P. S. Bizarro ${ }^{[5]}$,

I. Voitsekhovitch ${ }^{[6]}$ and contributors to the ITM-TF work programme

EFDA-CSU Garching, Boltzmannstr. 2, D-85748, Garching, Germany
Max-Planck-Institut für Plasmaphysik, EURATOM-IPP Association, Garching, Germany
Institute of Plasma Physics and Laser Microfusion, EURATOM Association,00-908 Warsaw, Poland Association EURATOM-CEA, CEA/DSM/IRFM, CEA Cadarache, France
Associa̧ão EURATOM/IST, Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, P-1049-001 Lisboa, Portugal

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

	INTRODUCTION
	The European Transport Solver is the modular package developed within the Integrated Tokamak Modelling (ITM) Task Force to perform 1-D simulations of the core plasma. It adopts the modular approach, when external physics modules provide the ETS with equilibrium, transport, sources and non-linear MHD events through the standardised interfaces linked with the ITM agreed data structure. It also adopts several numerical schemas, which can be switched depending on the problem needs to be solved. At the moment the ETS developing team is concentrated on verification and validation (V\&V) of the package. There are several contemporary efforts on ETS V\&V activity. First - testing of numerical solvers on analytical examples, using method of manufactured solutions, when exact solutions are compared to analytical ones for a simplified physics model. Second - testing the numerical precision and the conservation properties of ETS solvers, following a systematic V\&V roadmap (e.g., continuous / discontinuous transport coefficients, different DV ratio). Third - benchmarking of ETS against existing transport coefficients, different D/V ratio). Third - benchmarking of ETS against existing transport codes, such as ASTRA, JETTO, CRONOS and TRANSP, when all codes are configured in the same way, share the input and use the same or similar physics modules.

EQUATIONS

Fluxes: Transoort coerfilens:	
	$4=5+4 x^{2}$
All transport coefficients and sources are computed by external modules in standardized form, and treated as instances of relevant quantity	
sounoary conotrions:	
generic form of Equations:	

CODE STRUCTURE

The ETS is designed as a modular package communicating via agreed ITM data base.
This allows for easy exchange of modulues and benchmarking.

MANUFACTURED SOLUTION TESTS

The goal: First quality check aimed in verifying the coding. The test should prove that
Method of m
equation:
$\frac{\partial n}{\partial t}-\frac{1}{\rho} \frac{\partial}{\partial r}\left(\rho D \frac{\partial n}{\partial r}\right)=S$
Assume some functions for solution
and transport coefficient
and transport coefficient:
then it is possible to derive the
source:
$S=2 A \rho e^{\omega(}\left(\frac{\rho \omega}{2}-3 B\right)$ supplying D and S to the
numericia scheme one expects
to get back the given function

with some solvers the problem on conservation have been identified for
cases $==\gg$ authors have been notified and asked to correct the scheme

VERIFICATION OF PHYSICS MODULES
The goal: to identify differencies
attached to the ETS
Co

OUTLOOK

Detailed validation and verification strategy has been developed and partially completed.
Tests on manufactured solutions have been completed. Numerical tests on $D N$, stability Tests on manufactured solutions have been completed. Numerical tests on $D V$, stabilii,
and conservation have been started. Benchmarking to ASTRA, JETTO and SANCO
codes have been performed for simple cases. The reasonable agreement have been and conservation have been started. Benchmarking to ASTRA, JETTO and SA
cooles have been performed for simple cases. The reasonable arrement have
found between different codes, unless some differences in parallel resisitivity. found between different codes, unless some differences in parallel resistivity.
The benchmarking of ETS to other codes will be continued with increasing com The benchmarking of ETS to other codes will be continued with increasing comple
of physics (transport coefficients and sources from more sophisticated modules). - current rump up / rump down
benchmarking of anomalous transport implementation in different codes
benchmarking of sources implementation

- benchmarking of sources implementatio

