
Proposal for ETS verification and benchmarking procedure
(Participation of ASTRA, CRONOS and JETTO is highly appreciated)

General remarks.

The test problems proposed below are considered as the next step after the series of verification tests

of ETS based on the approach of manufactured solutions. Whereas the manufactured solutions serve to

check overall accuracy of the numeric schemes the main goal of this series is to check

(1) implementation of particular terms in the transport set of equations,

(2) consistency and accuracy of coupling between the particular terms and equations in the set,

(3) conservation properties,

(4) stability,

(5) interface with equilibrium solvers.

Input parameters:

R0 = 5 m,

a0 = 2 m,

B0 = 5 T,

Ipl = 1 ÷ 10 MA.

Notations and units:

All notations are based on a transport equation of the “density” form

∂V ′F

∂t
+
∂Γ

∂ρ
= V ′s, 0 < ρ < a0,

Γ|ρ=0(t) = 0 or equivalently |Γ/Sflux surf | <∞.

Extension for energy-like quantity, i.e. (nF ), is straightforward.

0 ≤ ρ ≤ a0 – indepenedent variable (minor radius), [m],

0 ≤ x = ρ/a0 ≤ 1 – indepenedent variable (normalized minor radius), [d/l],

V (ρ, t) – plasma volume, [m3], (V ′(ρ, t) = ∂V/∂ρ), [m2],

Sψ(ρ, t) = V ′ 〈|∇ρ|〉 – flux surface area, [m2],

F (ρ, t) – generic dependent quantity, (any of ψ, ne,i, Te,i, pe,i, etc.), [F],

Γ(ρ, t) = V ′
〈

(∇ρ)2
〉

(vF −D∂F/∂ρ) – flux of the quantity F through the entire flux surface, [F m3/s],

D(ρ, t) – diffusion coefficient, [m2/s]

v(ρ, t) – convective velocity, [m/s]

s(ρ, t) – source / sink of the quantity F , [F/s],

S(ρ, t) =
ρ
∫

0

s V ′dρ – integrated source, [F m3/s].

P (A,B) = B + (A−B)(1− (ρ/a0)
2) – parabolic radial profile, with A being central and B edge values,

H(X) = H(ρ/a0 −X) – Heaviside function of radius.

Nρ – number of radial grid points, [d/l]

τ – time step, [s]

Nτ – number of time steps, [d/l]

It is understood that density is multiplied by 1019 m−3, temperature is given in keV while all other

quantities are given in SI units)
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Part I. Cylindrical geometry. Consistency check.

In this part:

V ′ = 4πR0ρ,
〈

(∇ρ)2
〉

≡ 1,
〈

(∇ρ/R)2
〉

≡ R−2
0 ,

〈

(R0/R)2
〉

≡ 1, V = 2π2R0ρ
2, qcyl =

5B0a
2
0

IplR0
.

Number of “radial” grid points Nρ = {20, 50, 100, 200, 500, 1000},
Time step τ = {1.E-1,1.E-2,1.E-3}, if needed, e.g. for stiff problems, the time step can be reduced.

Characteristic times in the problems below vary by two orders of magnitude. Therefore, these grid

parameters should be considered as reference values. It is expected that each test case runs with 2 × 2

different time and space steps in order to provide an accuracy estimate. If the implemented numerical

scheme enables automatic time adjustment then the average time step for each problem and space grid

would be very helpful for appraising the scheme.

Output: Total simulation time tStop = τNτ = 10 ÷ 103 s.

0D quantities should be given for all time points.

1D quantities (radial profiles) are expected for several (5 ÷ 10) representative time slices.

Test I.1.1.

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 1 / 1 P (2, 1) – 0 0 0

Ti,1 / 2 1 / 1 P (2, 1) – 0 0 0

ne / 2 1 / 1 P (2, 1) – 0 0 0

ni,1 / 2 1 / 1 P (2, 1) – 0 0 0

ni,2 / 0 – – – – – –

Comment:

All F’s must stay unchanged.

Output: ne,i(ρ, t) − ne,i(ρ, 0), Te,i(ρ, t) − Te,i(ρ, 0).

Test I.1.2. Here f(ρ, t) = 1 + sin(t)

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 1 / 1 P (2, 1) – 0 0 0

Ti,1 / 2 1 / 1 P (2, 1) – 0 0 0

ne / 1 – – P (f(ρ, t), 1) 0 0 0

ni,1 / 1 – – P (f(ρ, t), 1) 0 0 0

ni,2 / 0 – – – – – –

Comment:

pe,i must stay unchanged.

Output: pe,i(ρ, t) − pe,i(ρ, 0).



May 18, 2009 ETS V&B – draft 3

Test I.1.3.

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 4 / 0 P (2, 1) – 1 0 0

Ti,1 / 2 4 / 0 P (2, 1) – 1 0 0

ne / 2 4 / 0 P (2, 1) – 1 0 0

ni,1 / 2 4 / 0 P (2, 1) – 1 0 0

ni,2 / 0 – – – – – –

Comment:

Particles and energy must be

conserved.
∫

V

P (A,B)dV =
A+B

2
V ,

∫

V

P 2(A,B)dV =
A2 −AB +B2

3
V

Exact solution for n is available

Output: Fluxes Γ(ρ, t) and volume integrals
ρ
∫

0

F V ′dρ for all F s.

Test I.1.4. Similar to I.1.3 but the equipartition term is included on the rhs

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 4 / 0 P (3, 1) – 1 0 Qie

Ti,1 / 2 4 / 0 P (1, 1) – 1 0 Qei

ne / 2 4 / 0 P (2, 1) – 1 0 0

ni,1 / 2 4 / 0 P (2, 1) – 1 0 0

ni,2 / 0 – – – – – –

Comment:

Particles and energy

must be conserved.

Output: Profiles, fluxes Γ(ρ, t) and volume integrals
ρ
∫

0

F V ′dρ for all F s.

Test I.1.5. Similar to I.1.4 but a stepwise heating term is included

Qpulse(ρ, t) = [H(ρ− ρ1) −H(ρ− ρ2)] [H(t− t1) −H(t− t2)] , 0 < ρ1 < ρ2 < a0, 0 < t1 < t2 < T

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 4 / 0 P (3, 1) – 1 0 Qie +Qpulse

Ti,1 / 2 4 / 0 P (1, 1) – 1 0 Qei

ne / 2 4 / 0 P (2, 1) – 1 0 0

ni,1 / 2 4 / 0 P (2, 1) – 1 0 0

ni,2 / 0 – – – – – –

Output: Profiles, fluxes, volume integrals for F s and
T
∫

0

dt
a0
∫

0

Qpulse V
′dρ.
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Test I.1.6. Modulated heating term is included Qω = 1 + sinωt

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 1 / 0 P (3, 1) – 1 0 Qie +Qω

Ti,1 / 2 1 / 0 P (1, 1) – 1 0 Qei

ne / 1 – – P (2, 1) – – –

ni,1 / 1 – – P (2, 1) – – –

ni,2 / 0 – – – – – –

Output: Fourier harmonics (in time) of Te and Ti.

Test I.1.7.

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 4 / 0 P (2, 1) – 0.1 1 0

Ti,1 / 2 4 / 0 P (2, 1) – 0.1 1 0

ne / 2 4 / 0 P (2, 1) – 0.1 1 0

ni,1 / 2 4 / 0 P (2, 1) – 0.1 1 0

ni,2 / 0 – – – – – –

Test I.1.8.

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 1 – – – – – –

Te / 2 4 / 0 P (2, 1) – 0.1 -1 0

Ti,1 / 2 4 / 0 P (2, 1) – 0.1 -1 0

ne / 2 4 / 0 P (2, 1) – 0.1 -1 0

ni,1 / 2 4 / 0 P (2, 1) – 0.1 -1 0

ni,2 / 0 – – – – – –

Output: Profiles, fluxes Γ(ρ, t) and volume integrals
ρ
∫

0

F V ′dρ for all F s.

At D → 0 the equation

degenerates so that the

boundary condition at

ρ = 0 cannot be satisfied.

Nevertheless, it makes

sense to push D in both

examples down to zero in

order to determine numeric

limits and get an idea

about residual numerical

diffusion of the scheme.

For v = Const, equation
∂

∂t
ρn +

∂

∂ρ
ρvn = 0

has a general solution

n(ρ, t) =
(ρ− vt)

ρ
n0(ρ−vt)

where n0(ρ) = n(ρ, t = 0).

Comment:

For constant v and D the equation
∂

∂t
ρn+

∂

∂ρ
ρ

(

vn−D
∂n

∂ρ

)

= 0 has a steady state (asymptotic)

solution n(ρ, t) = Ce
v
D
ρ where the constant C is defined by the particle conservation condition which

for parabolic initial distribution n(ρ, t = 0) = P (n0, n1) gives

C =
1

a2
0

[

g
(va0

D

)]−1
∫ a0

0

n(ρ, t = 0)ρ dρ =
n0 + n1

4

[

g
(va0

D

)]−1

,

with g(x) being g(x) = [1 + (x− 1)ex] /x2 and g(x)|x→0 ≈ 1

2
+
x

3
, g(x)|x→∞ ≈ 1

x
ex.
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Test I.1.10. ”Poloidal” field energy dissipation. For F = ψ, D(ρ, t) should be replaced by conductivity

σ‖.

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 2 2 / 10 MA P (0, 2πR0) – σ‖ 0 0

Te / 2 1 / 1 keV P (2, 1) – 1 0 QOH +Qie

Ti,1 / 2 1 / 1 keV P (2, 1) – 1 0 Qei

ne / 1 – – P (2, 1) 1 0 0

ni,1 / 1 – – P (2, 1) 1 0 0

Comment:

No steady state.

Thermal and

field energy must

be conserved.

Output: Current density, loop voltage, safety factor, poloidal field energy, Poynting vector, Joule

heating, energy contents as functions of time and radius.

Test I.1.11. Boundary condition – prescribed loop voltage.

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 2 3 / 0.2 V P (0, 2πR0) – σ‖ 0 0

Te / 2 1 / 1 keV P (2, 1) – 1 0 QOH

Ti,1 / 0 – – – – – –

ne / 1 – – P (2, 1) – – –

ni,1 / 1 – – P (2, 1) – – –

Comment:

Slow thermal

instability can

occur.

Output: Current density, loop voltage, poloidal field energy, Poynting vector, Joule heating.

Test I.1.12. Non-inductive current drive.

F value / flag Bnd. type / value F (ρ, 0) F (ρ, t) D v s

ψ / 2 2 / 10 MA P (0, 2πR0) – σ‖ 0 (*)

Te / 2 1 / 1 P (2, 1) – 1 0 QOH

Ti,1 / 0 – – – – – –

ne / 1 – – P (2, 1) – – –

ni,1 / 1 – – P (2, 1) – – –

Comment:

The total current

should be

replaced by a

non-inductive

current.

∗) Noninductive current density is set to jni = (πa)−2 × 107 A/m2

Output: Poloidal field energy, Poynting vector, Joule heating, energy contents as functions of time and

radius.
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Part II. Stiff transport.

A simplified “cylindrical” diffusion equation for a quantity F reads



























∂F

∂t
=

1

x

∂

∂x

(

xD
∂F

∂x

)

+ S, 0 < x < 1, t > 0,

|DFx(t, x = 0)| <∞, F (t, x = 1) = F1(t), Fx =
∂F

∂x
,

F (t = 0, x) = F0(x).

Diffusion coefficient is assumed to have the form D = D0 +Dan.

A single equation for the main ion component ni can be used here in place of F .

The estimate of accuracy should be based on the time behaviour of Fx =
∂F

∂x
or Dan rather than F (t, x).

It would be useful to have an output for the grid quantities

Qf (t, x) = −xDFx, Qs(t, x) =

x
∫

0

xSdx, Qt(t, x) =
∂

∂t

x
∫

0

xFdx.

Test II.1. Simple model.

Stiff transport is described by Dan = D1 max(0,−Fx − ηcr) that switches on a stiff transport once |Fx|
exceeds ηcr. The following input parameters are proposed

F0 = 0.1,

F1 = 0.1,

D0 = 0.1,

D1 = 1,

ηcr = 1,

S = 1.

Test II.2. Stiff transport + transport barrier.

Dan = D1 min[max(0,−Fx− ηcr), 0.07/(−Fx− ηcr). The added correction suppresses the stiff transport

in the range where |Fx| > ηcr +
√

0.07.

The input parameters are the same as in II.1 except for S = 1 + P (1, 0). This change restricts an

extension of the transport barrier to 0.525 < ρ/a0 < 0.75.

Test II.3. If a special scheme is implemented to treat stiff transport then two additional runs should be

performed for a non-stiff transport D1 = 0. One run should use the “stiff” numeric scheme, another a

regular scheme. The aim is to evaluate distortions introduced by the stiff scheme to a non-stiff transport.
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III. Toroidal geometry. (Coupling with equilibrium solver).

Tbd


