

LSDF – Large Scale Data Facility at KIT

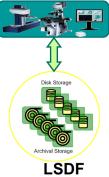
Marcus Hardt, J.v.Wezel, R.Stotzka, T.Jejkal, V.Hartmann, M.Sutter, A.Garcia, A.Hammad | December 2, 2010

STEINBUCH CENTRE FOR COMPUTING (SCC

www.kit.edu

Goals of LSDF

- Build Germany's largest Data Storage to support data intensive science
- Attract new demanding users to expoit synergies
 - Understand, develop and deploy of community specific services
 - Collect and analyse use-cases
 - Honour community specific techniques and systems
 - Integrate and develop generic methods and tools
- World wide secure access to data
 - International collaborations
 - Ensure transparent access
 - Integration with established access / authentication methods
- Added value and tools for data processing
 - Integrate well connected clusters
 - Meta-data management and tools
- Long term data storage
 - Store the data itself (legal reasons)
 - Provide Methods to access/understand the data
- Funded within the national HGF programme "SuperComputing"


2 December 2, 2010 Marcus Hardt, J.v.Wezel, R.Stotzka, T.Jejkal, V.Hartmann, M.Sutter, A.Garcia, A.Hammad – LSDF

Goals

Status

Conclusion

Data intensive experiments

Backupslides

Karbruhe Institute of Technology

Status: Storage

- 2 high grade disk systems
 - 550 TB [Data Direct Networks]
 - 1,2 PB 3 PB (2011) [IBM]
 - Tape backend for archive and backup
 - Fibre Channel attached
- Dedicated storage servers
 - GPFS on top of each storage system
 - exported as GPFS, NFS, CIFS, webdav
- Directly attached to data sources / processing clusters
 - 10 Gb/s dedicated redundant backbone
 - 10 Gb/s dedicated links to prime partners, 1Gb/s others
- Well connected inside Germany:
 - 10GE to all data-centres in Germany
 - 40GE to HLRS-Stuttgart
 - 100GE connectivity to FZJ planned and tested

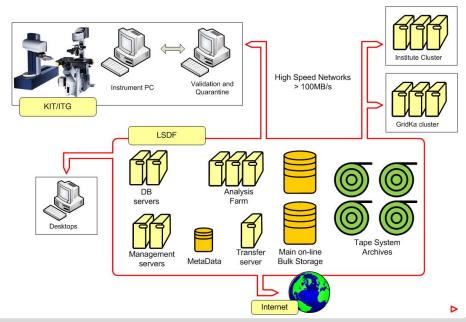
Goals

Status: Computing

- Experiments should level-0 process data locally
 - i.e. where the data is created
 - 15 days to transfer 1 PB over ideal 10Gb/s link
- Small processing cluster:
 - 58 nodes with 8 cores, 36GB memory
 - Directly attached to storage (GPFS)
 - Hadoop environment
 - 110 TB HDFS, Hadoop native filesystem
 - Good scalability on commodity hardware
 - However, use-case must match map-reduce paradigm
 - Cloud environment OpenNebula
 - Users can deploy own dedicated data-processing VMs
 - Reliable, highly flexible, and very fast to deploy

OpenNebula.org

Marcus Hardt, J.v.Wezel, R.Stotzka, T.Jeikal, V.Hartmann, M.Sutter, A.Garcia, A.Hammad - LSDF December 2, 2010



Status 0000

LSDF birds-eye view

Current work

- Implementing / integrating experiments
 - e.g.: High throughput microscopy workflow
 - Images are stored to hadoop cluster
 - Preprocessing right there
 - Storing output on LSDF
- Metadata:
 - Data that cannot be found (in a few seconds) is nonexistent data
 - accessibility increases the data value
 - simple access (input and retrieval) increases acceptance by communities
 - Higher level access layer vs. indexed searching
- Dissemination to new potentially interested communities
- Add support for IPv6

Some experiments at KIT/LSDF

USCT

- for breast-cancer diagnosis
- 0.3 PB per year
- Immunogenetics Institute Charité Berlin
 - Computer tomography of sea urchins
 "several houndred" TB per year
- ANKA
 - Svncroton Beam Source
 - 240 PB per year (2013: 1 PB per year)
- Robotic high throughput Microscopy
 - Biology / Genetics
 - 1 PB per year
- Large Hadron Collider (LHC)
 - Currently uses 5 PB at dedicated facility
 - 1 PB per year
- Yearly growth, currently summing up to
 - 150 TB: 2010
 - 1 PB· 2011
 - 2.5 PB/a: 2012 2014
 - 5 PB/a: 2015 +

Marcus Hardt, J.v.Wezel, R.Stotzka, T.Jejkal, V.Hartmann, M.Sutter, A.Garcia, A.Hammad - LSDF December 2, 2010

atus	Conclusion
	0

Backupslides

7

0000

Goals

To conclude

- First hardware up and running
- First software services available
- First data stored
- First experimental data processed
- Focus on user requirements
 - Added value services on top of large storage
- Many scientific communities interested and getting involved
- Future activities
 - Grow beyond KIT, HGF and build international collaborations
 - Involve new experiments
 - Approach new communities
 - Explore new techniques, integrate/develop new services

Scaling to terabit networks and exabyte storage must start today

0

Thank you.

9 December 2, 2010 Marcus Hardt, J.v.Wezel, R.Stotzka, T.Jejkal, V.Hartmann, M.Sutter, A.Garcia, A.Hammad – LSDF

0	02	1-	

0

Status 00000 Conclusion O Backupslides

Software Development within LSDF

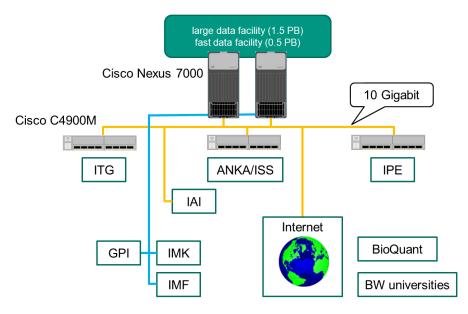
- Provisioning of storage and archives in exabyte scale
- Development of software technologies for distributed data management and archiving
- Development of efficient transport protocols from the experimental facilities, e.g. robotic microscopes, to the LSDF
- Development of technologies to handle the special requirements of experiment data (e.g. 3D image stacks)of various research communities (e.g. systems biology)
- Development of open standards and implementation across computing centre borders
- Provisioning of compute resources for data analysis
- Development and integration of data analysis services
- Specific support for users with data intensive applications
- Development of data and meta data models for specific user groups
- Optimized data organization for specific user groups

10 December 2, 2010 Marcus Hardt, J.v.Wezel, R.Stotzka, T.Jejkal, V.Hartmann, M.Sutter, A.Garcia, A.Hammad - LSDF

	0	
u	U	1
~		

Roadmap

- Hardware
 - Storage capacity (planned deltas)
 - 10Q4 2 PB
 - 11Q2 4 PP (SONAS on 2 PB IBM storage)
 - 12Q2 6 PB
 - 10 Q4 Dedicated tape storage
 - 11 Q2 Improved network connectivity and services
 - Dedicated 10 Gb/s backbone for 3 more institutes
 - Initial support for IPv6 in Q2 2011
 - 11Q3 40 Gb/s Link to BioQuant/Heidelberg
- Services
 - 10Q4 Enable direct access storage for first experiments, Q3 2010
 - stop gap measure until tools are available
 - 11Q1 iRods software operational
 - 11Q2 Additional communities integrated
 - ANKA (synchroton radiation ring)
 - IMK (meteorology and climate research)
 - Geophysical data


11 December 2, 2010 Marcus Hardt, J.v.Wezel, R.Stotzka, T.Jejkal, V.Hartmann, M.Sutter, A.Garcia, A.Hammad - LSDF

ls	Status	Conclusion
	00000	0

Backupslides

LSDF Network

