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The SWIM project is carried out in two physics campaigns
distinguished by the time scale of unstable MHD motion

Fast MHD phenomena - separation of time scales

®* Response of plasma to RF much slower than fast MHD
motion — transport time-scale

* RF drives slow plasma evolution, sets initial conditions
for fast MHD event

* Example: sawtooth crash

Slow plasma evolution |

Slow MHD phenomena — no separation of time scales

* REF affects dynamics of MHD events < MHD
modifications affect RF drive plasma evolution

* Deals with multi-scale issue of parallel kinetic closure
including RF (mainly ECRH)
* Example: Neoclassical Tearing Mode
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Software infrastructure: Integrated Plasma Simulator (IPS)
A flexible, extensible computational framework capable of coupling state-of-the-art
models for energy and particle sources, transport, and stability for tokamak core plasma
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Integrated Plasma Simulator design — component based
architecture allows continued, independent development of physics

Physics layer Driver Script allows extensibility,
flexibility in controlling simulation \
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Can incorporate composite, multi-physics, tightly coupled
functionality as IPS components

Physics layer Driver Script allows extensibility,
flexibility in controlling simulation \

Physics components
drawn from existing
code base — multiple
code implementations
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Control independent of driver component
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A physicists view of the Integrated Plasma Simulator. Implemented with
existing well tested and validated codes. Multiple code implementations

Driver and Framework
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Physics studies with IPS

® ITER discharge simulations with massively parallel RF and neutral beam
components

® Use of IPS to study ECCD resistive tearing mode stabilization and motion
of flux surfaces — coupling to GENRAY ECH ray tracing to NIMROD
nonlinear MHD

® Use of IPS to study parallelization in time of DTEM turbulence (parareal
algorithm)

® Studies of RF driven energetic tail formation on Alcator C-mod
® Onset of saturated n =1, m = 1,2 modes in NSTX - coupling of IPS to M3D

¢ Use of IPS to study control of sawtooth onset time with lower hybrid waves
on C-mod

® Interface with FACETS for core-edge coupling
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IPS is supporting ITER simulations for International Tokamak
Physics Activity (ITPA) and ITER Organization tasks

A planned operational scenario of ITER is the “hybrid mode’> — achieve high fusion
yield for long discharge time

————————
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Summary of ITER simulations with IPS

Simulations at very high resolutions to show capability of massive parallelism
— TSC +AORSA + NUBEAM (1,000,000 particles/species)
— TSC + TORIC (255 poloidal modes) + NUBEAM (1,000,000 particles/species)
— running times ~ 30 hr on 1600 cores

Simulations at resolutions more typical of present practice for comparison
— ITER hybrid scenario

— TSC (1 core), TORIC (31 poloidal modes, 4 cores), NUBEAM (5,000 particles/species,
16 cores)

— Typically ramp-up from 1.5 sec into flattop 550 sec

® TSC alone — using TSC internal (analytic) models for NBI and ICRF
— No parallelism, 1 core, running time ~ 11 hr

® TORIC + NUBEAM + TSC - sequential execution of parallel components
— One level of parallelism, 16 cores, running time ~ 28 hr

® TORIC + NUBEAM + TSC - concurrent execution of parallel components
— Two levels of parallelism, 24 cores, running time ~ 12 hr

®* Parameter study — pedestal location, pedestal height (chi pedestal)
— Nine concurrent simulations run simultaneously
— Three levels of parallelism, 128 cores, running time ~ 16 hr
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Electron cyclotron current drive (ECCD) has been successful in
controlling neoclassical tearing modes
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® Slow response describing tearing modes — extended MHD (NIMROD)
® Modeling of ECRF propagation and absorption - RF (GENRAY)

® Couple extended MHD to RF component:
— Give n=0 modification of tearing mode and RF current back to RF code

® Couple RF component to extended MHD component:
— Provide RF driven velocity-space flux, or moments thereof

DBB 12/1/10



NIMROD/GENRAY coupling in IPS — NIMROD is run as a
service, but controls time loop via simulation event handling

Time
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>
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run 2
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* For RF/MHD problem,
NIMROD exports magnetic
geometry and n,T profiles to
Plasma State

» Using NIMROD’s profiles,
GENRAY then calculates RF
propagation and power
deposition; exporting these
quantities to the Plasma
State

e NIMROD converts
GENRAY data into
momentum and energy
source terms.

* Coupling not yet fully
completed

Two levels of parallelism — parallel NIMROD run concurrently with GENRAY
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Tales from the parareal — simple algorithm that allows parallelization in time
sometimes (J. Lyons, Y. Mayday, G. Turinici, CR Acad. Sci. I - Math 332, (2001), 661-668)
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Consider time evolution problem: du =F(u), u(0)=u,

Define: 7 =nAT, u, =u(T),)

Assume have two time advance operators:

F, ,; fine —accurate but takes a long time torun  u,,, = F, ., (u,)

n

G, ar coarse — inaccurate but runs very quickly u  ~G .. (u)
The method is based on the iteration scheme: |
u2+1 =G, (ug)
) = G, ar (u;fﬂ) +F, o (uf) =G, ur (u,f)

n+l1

Example: % —Au=sin(Snt)=F, ,, — — Au
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Can parareal be used to accelerate real physics calculations (e.g evolution of fully
developed turbulence)? — BETA a pseudo-spectral solver for model DTEM physics

® Fine solver based on Hasagawa-Mima:

d 2772 ad) V, ad) 4L a¢
at(l pV )¢+Day2 2 9y 8% V N Xz oV (P Sources — Sinks

For the coarse solver use same equation as fine solver, but:
— Reduce spatial resolution: ~half
— Faster, less precise time integrator: 4" order RK instead of VODPK
— Change dissipation scale

* For projection from fine to coarse solution — truncation

* For lifting from coarse to fine solution — match spectral slope, use random phase; other
wise, keep high order coefficients from previous iteration

* For convergence — total mode energy was shown to be a good proxy for convergence of
low k modes. Thus only one convergence measure was needed.

¢ Initially implemented entirely in MPI (very complicated) — Samaddar, Newman, Sanchez,
J.Comp Phys 229 (2010) 6558-6573
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The parareal algorithm was re-implemented in the IPS without
modification to the IPS — much more straightforward implementation

¢ IPS implementation:

Three IPS components (no plasma state) — fine solver, coarse solver, convergence test
Task pool manager — efficiently handles parallel executions of fine solver
Traditional loop control — iteration loop, not time loop

Two levels of parallelism — MPI coarse and fine solver codes, multiple instances of fine
solver component

® Dividing the simulation time interval into 160 slices, convergence was obtained in
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An innovative modification of the parareal workflow using IPS
results an improvement in efficiency and run time, factor of 2

® Obvious observation (but for years nobody observed it) — You don’t have
to wait for all coarse solves to complete before starting the iteration and
the next round of fine solves. — You can interleave them
® Three levels of parallelism — MPI coarse and fine solver codes, multiple
instances of coarse and fine solver components, concurrent execution of
coarse solver, fine solver and convergence components
®* Completely event driven — No traditional loop
1200 | | Proce!ssor Utili!zation ! !
W. Elwasif (CM11, later this session) — A_"erage
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Other highlights

DBB

Interface with FACETS for core-edge coupling
— Use FACETS as another tightly coupled, multi-physics composite component

— Project synergy: FACETS gets access to SWIM source components alternate work-
flow. SWIM gets access to edge and core/edge models, alternative EPA model.
Together we get earlier capability for higher fidelity coupled core/edge studies

Onset of saturated n =1, m = 1, 2 modes in NSTX - coupling of IPS to M3D

— Developed TSC experimental data access capability — experimental profiles
— Generalizing to an experimental data access component useable by other components

Theoretical development of RE/MHD equations consistent for Slow MHD studies,
Kinetic closures for extended MHD with RF

Studies of RF driven energetic tail formation on Alcator C-mod
— Time dependent RF/Fokker Planck calculations with AORSA and CQL3D components
— Exploring JFNK for tight coupling of AORSA/CQL3D

Use of IPS to study control of sawtooth onset time with lower hybrid waves on C-
mod — Adds ray tracing component (GENRAY) also used in ITER scenario
studies
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