
Detailed Overview of the
Plasma State Software

Presented at the EU-US Workshop on
Software Technologies for Integrated

Modeling, Dec. 1, 2010.

The Plasma State (PS) Software

• Native fortran-2003 implementation.

• Supplemented with detailed C++ facility for
Plasma State object instantiation and access.

• Contents are defined from a specification file:
– http://w3.pppl.gov/~dmccune/SWIM

• Specification: plasma_state_spec.dat.

• Early design documents.

• Example Plasma State NetCDF files.

• Python script-generated source code.

12/01/2010 2D. McCune

http://w3.pppl.gov/~dmccune/SWIM�

PS Software Distribution

• http://w3.pppl.gov/NTCC
– NTCC library module with dependencies

• Build is laborious but we can provide technical support.

– Works well with most Fortran-2003 compilers:
• Pathscale, Intel, gfortran, Solaris, lf95 32-bit.
• PGI (some routines require disabling of optimizer).

– Now used by NUBEAM NTCC module.

• Code development: TRANSP svn repository
• Mirrored in: SWIM SciDAC svn repository

12/01/2010 D. McCune 3

http://w3.pppl.gov/NTCC�

Plasma State in Fortran-2003

12/01/2010 D. McCune 4

Program my_prog
use plasma_state_mod ! Definition, methods
! Also declares some instances: ps, psp, aux, …

type (plasma_state) :: my_ps ! User defined…

call ps_init_user_state(my_ps, “my_ps”, ierr)
if(ierr.ne.0) <…handle error…>

call ps_get_plasma_state(ierr, &
filename=“my_ps.cdf”, state=my_ps)

if(ierr.ne.0) <…handle error…>

write(6,*) ‘ #thermal species: ‘,my_ps%nspec_th

Plasma State in C++ [1]

12/01/2010 D. McCune 5

void testCxx(int argc, char* argv[]) {

int debug = getDebugLevel(argc, argv);
// constructor
PlasmaState ps("test", debug);

// set number of thermal species
ps.setData("nspec_th", 7);
int nspec_th = ps.getData<int>("nspec_th");
assert(nspec_th == 7);

// allocate arrays
ps.alloc();

// store as file
ps.store(“test.nc”);

See: Exposing Fortran Derived
Types to C and other languages,
A. Pletzer, D. McCune et al., CISE
Jul/Aug 2008 (Vol. 10 No. 4).

PS Code Development History

• 2006-2007 –
– Design discussions, SWIM project participants

• Physicists, Programmers, CS experts

– Version 1.xxx implementation by D. McCune
– Version 2.xxx, major changes, designed late 2007.

• 2008-2010 –
– Version 2.xxx implementation by D. McCune
– Use in PTRANSP, SWIM, FACETs frameworks;
– Use broadened to other projects e.g. TGYRO.

• Now at PSv2.029; ~1 FTE net labor investment.

12/01/2010 D. McCune 6

Plasma State Object Contents

• Member elements are scalars and arrays of:
– REAL(KIND=rspec), equivalent to REAL*8.
– INTEGER.
– CHARACTER*nnn – strings of various length.

• Flat structure, scalars and allocatable arrays:
– All object members are primitive fortran types.

• Maximum element identifier length = 19
– Alphabetic 1st character; then alphanumeric + “_”
– 26*37**18 = 4.39*10**29 possible element names

11/9/2010 Plasma State -- D. McCune (PPPL) 7

Plasma State Contents (p. 2)

• C++ set/get method names have maximum
length 19+13 = 32 characters.

• Semantic elements (constituted by one or
more primitive PS object data elements):
– Item lists (for example: list of neutral beams).

– Species lists (for example: list of beam species).

– Grids (for example: radial grid for neutral beam
physics component).

11/9/2010 Plasma State -- D. McCune (PPPL) 8

Plasma State Sections

• Machine_Description
– Time invariant, shot invariant for tokamak-epoch

• Shot_Configuration
– Time invariant within a shot (e.g. species lists).

• Simulation_Init
– Time invariant (e.g. grids & derived species lists).

• State_Data – non-gridded scalars and arrays.

• State_Profiles – arrays of gridded profiles.

11/9/2010 Plasma State -- D. McCune (PPPL) 9

Plasma State Physics Components

• Each data element is assigned to a physics
component.

• List of components:
– Plasma (pertaining to thermal species profiles)
– EQ (pertaining to MHD equilibrium)
– Heating components: NBI, IC, LH, EC
– FUS (fusion products)
– RAD (radiated power); GAS (neutral species)
– RUNAWAY, LMHD, RIPPLE, ANOM (see spec.)

11/9/2010 Plasma State -- D. McCune (PPPL) 10

For Example: NBI Component

• Machine description:
– List of neutral beams:

• Names, detailed geometry, energy fraction tables.

• Shot configuration:
– Injection species for each neutral beam.

• Simulation initialization:
– Beam species list, derived from shot configuration.

– Radial grid for NBI profile outputs.

11/9/2010 Plasma State -- D. McCune (PPPL) 11

NBI Component (p. 2)
• State Data

– Neutral beam injector powers and voltages.

– Injection fractions (full/half/third energy beam
current fractions).

• State Profiles
– Beam ion densities nb, and <Eperp>, <Epll>.

– Main Heating: Pbe, Pbi, Pbth.

– Main Torques: Tqbe, Tqbi, TqbJxB, Tqbth.

– Particle source profiles, all thermal species.

– Current drive, beam deposition halo profiles, etc.
11/9/2010 Plasma State -- D. McCune (PPPL) 12

PS: What’s in and What’s not

• Included in Plasma State: physics data shared
between components:
– E.g. neutral beam powers set by plasma model.
– Profiles returned by NBI, used by plasma model.

• Not included:
– Implementation specific controls:

• E.g. NPTCLS for NUBEAM implementation of NBI.

– Data specific to a single implementation only:
• E.g. Monte Carlo code state as particle lists.

– So far profiles of rank > 2 have not been used.

11/9/2010 Plasma State -- D. McCune (PPPL) 13

Item Lists in Specification File

12/01/2010 D. McCune 14

Coil/circuit description -- free boundary sim.
L|pf_circuits circuit_name(ncircuits) ! PF circuits

L|pf_coils coil_name(ncoils) ! Axisymmetric coils

N coil_in_circuit(ncoils) ! circuit to which
! each coil belongs (name must match exactly)

R|units=m Rloc_coil(ncoils) ! R, lower left corner
R|units=m Zloc_coil(ncoils) ! Z, lower left corner

…etc…

• L – define list: CHARACTER*32 names & array dimension.
• N – CHARACTER*32 array of names.
• R – REAL*8 arrays or scalars with physical units (MKS & KeV).

Item Lists in Plasma State

12/01/2010 D. McCune 15

List Label Array of Names, Dimension Component Section

PF_circuits Circuit_name(ncircuits) EQ Machine Descr.

PF_coils Coil_name(ncoils) EQ Machine Descr.

Neutral_beams NBI_src_name(nbeam) NBI Machine Descr.

ICRF_source ICRF_src_name(nicrf_src) IC Machine Descr.

ECRF_source ECRF_src_name(necrf_src) EC Machine Descr.

LHRF_source LHRF_src_name(nlhrf_src) LH Machine Descr.

Gas_source GS_name(ngsc0) GAS Machine Descr.

PS_moments* PSmom_num(npsmom) EQ Sim. Init.

EQ_moments** EQmom_num(neqmom) EQ Sim. Init.

*Neoclassical Pfirsch-Schlutter moments
**Fourier moments for a representation of core plasma flux surfaces

ps%NBI_src_name(ps%nbeam) – name of the last neutral beam in state “ps”

Species Lists in Specification File

12/01/2010 D. McCune 16

Main thermal plasma species list:
S|thermal_specie S(0:nspec_th) ! All thermal species
! Index 0 for electrons

S|fusion_ion SFUS(nspec_fusion) ! Fusion products
S|RF_minority RFMIN(nspec_rfmin) ! RF minority ions

S|beam_ion SNBI(nspec_beam) ! Beam species
! Derived from beam injector (nbeam) data

S|specie ALL(0:nspec_all) ! All species
! Concatenation derived from primary species lists

• S – define species list: <root_name> & <array_dimension>
• CHARACTER*32 <root_name>_name(<array_dimension>)
• INTEGER <root_name>_type(<array_dimension>)
• REAL*8 q_<root_name>(<array_dimension>) – charge (C).
• REAL*8 m_<root_name>(<array_dimension>) – mass (kg).

Using Species List Data

12/01/2010 D. McCune 17

! The plasma_state_mod module defines parameters:
! Mass of proton (KG)
REAL(KIND=rspec), parameter :: ps_mp = 1.6726e-27_rspec
! Unitary charge (C)
REAL(KIND=rspec), parameter :: ps_xe = 1.6022e-19_rspec

! For data in state object “ps”: last ion in thermal list:
! mass divided by proton mass
A = ps%m_s(ps%nspec_th)/ps_mp
! Atomic charge
Zatom = ps%Qatom_s(ps%nspec_th)/ps_xe
! Ionic charge (Zion = Zatom for fully stripped ion):
Zion = ps%q_s(ps%nspec_th)/ps_xe

do i=1, ps%nspec_th
write(6,*) i, ps%Qatom_s(i)/ps_xe, ps%q_s(i)/ps_xe, &

ps%m_s(i)/ps_mp
enddo

Species Lists in Plasma State

12/01/2010 D. McCune 18

List Label Array Name Root, Dimension Component Section

Thermal_specie S(0:nspec_th) PLASMA Shot Config.

Fusion_ion SFUS(nspec_fusion) FUS Shot Config.

RF_minority RFMIN(nspec_rfmin) IC Shot Config.

Beam_ion SNBI(nspec_beam) NBI Sim. Init.

Specie ALL(0:nspec_all)* PLASMA Sim. Init.

Thermal_specie SA(0:nspec_tha)** PLASMA Sim. Init.

Specie ALLA(0:nspec_alla)*** PLASMA Sim. Init.

Neutral_gas SGAS(nspec_gas) GAS Sim. Init.

Impurity_atoms SIMP0(nspec_imp0) GAS Sim. Init.

* all-species list: all thermal species & all fast ions, combined in single list.
** abridged thermal species list: impurities merged.
*** abridged thermal species & all fast ions, combined in single list.
ps%SA_name(ps%nspec_tha) – name of last thermal ion specie, abridged list.

Grids in the Plasma State

12/01/2010 D. McCune 19

Grid Array Name, Dimension Component Section

rho(nrho)* PLASMA Sim. Init.

rho_eq(nrho_eq) EQ Sim. Init.

th_eq(nth_eq)** EQ Sim. Init.

R_grid(nR) EQ Sim. Init.

Z_grid(nZ) EQ Sim. Init.

rho_eq_geo(nrho_eq_geo) EQ Sim. Init.

rho_nbi(nrho_nbi) NBI Sim. Init.

rho_fus(nrho_fus) FUS Sim. Init.

(etc., etc., etc.) All components Sim. Init.

* “rho” radial grids: sqrt(<normalized-toroidal-flux>), range [0.00:1.00].
** “th” poloidal angle grid, range [0.00:2*pi] or [-pi:+pi].
All grids are aligned with boundaries of numerical zones, covering
the entire range of their respective coordinate domains.

Use of PS in Simulation

• Initialization:
– Driver code sets up item lists by reading machine

description file (an ascii namelist).

– Driver code sets up species lists for simulation.

– Components each set up their own grids.

– Plasma State supports partial allocation, allowing
for distributed multi-step initialization strategy.

• Time dependent use:
– Components update data in time loop.

11/9/2010 Plasma State -- D. McCune (PPPL) 20

Plasma State Array Allocation

• Procedure:
– Set array dimension sizes (e.g. ps%nrho_nbi = 21).

– Call module routine:
• CALL ps_alloc_plasma_state(ierr, state=ps)

– Set grid values ps%rho_nbi(1:ps%nrho_nbi) = …

• Unallocated arrays with all dimensions defined (i.e.
greater than 0) are allocated by call.

• Each array can only be allocated once in the history of a
plasma state object.

• Dynamic re-gridding can be done but requires:
– Creation of a new state object; copying & interpolation of data.

12/01/2010 D. McCune 21

PS Interpolation Services

• Components provide data on their native grids.

• Interpolation typically required for use.

• Plasma State definition provides “recommended”
interpolation method for each defined profile:
– Spline, Hermite, piecewise linear, zone step functions

– Conservative “rezoning” of profiles:
• For densities & sources conserve #, #/sec, Watts, …

• For temperatures conserve volume integrated n*T.

• Interpolation libraries: xplasma, pspline (NTCC).

11/9/2010 Plasma State -- D. McCune (PPPL) 22

Profile Interpolation by Rezoning

12/01/2010 D. McCune 23

! Plasma State “ps” has fine PLASMA grid ps%nrho = 101
! and coarse NBI grid ps%nrho_nbi = 21
use plasma_state_mod ! Interpolation data tags id_<name>(…)
! Test arrays:
real*8, dimension(:), allocatable :: my_te, my_pbi

! Allocate arrays with zone-centered orientation
allocate(my_te(ps%nrho_nbi-1),my_pbi(ps%nrho-1))

! Fine-to-coarse rezone (ne*Te sum conserved):
call ps_rho_rezone(ps%rho_nbi, ps%id_Ts(0), my_te, ierr, &

state=ps)

! Coarse-to-fine rezone with smoothing to suppress step
! function structure (PBI sum conserved, output in W/zone,
! local radial shifts up to ½ width of coarse zones).
call ps_rho_rezone(ps%rho, ps%id_pbi, my_pbi, ierr, &

state=ps, nonorm=.TRUE., zonesmoo=.TRUE.)

PS I/O Services

• Ps_get_Plasma_State – read all from NetCDF
• Ps_store_Plasma_state – write all to NetCDF
• Ps_read_update_file – read a Plasma State

update, e.g. data from a separate component.
• Ps_write_update_file – write an update:

changed elements only.
• Interpolation data updated on each call.
• All I/O subroutines as well as object definitions

written and updated by Python code generator.

11/9/2010 Plasma State -- D. McCune (PPPL) 24

PS Version Compatibility

• Current released SWIM version: 2.029.

• All version 2.xxx states compatible
– Code linked to newer PS software can read old

version state file; some data items missing.

– Code linked to older PS software can read new
version state file; some data items not used.

• Version interoperability maintained by the
Python code generator.

• So: version updates are relatively painless.

11/9/2010 Plasma State -- D. McCune (PPPL) 25

PS Definition Update Procedure

• Edit the specification file.

• Run the Python code generator.

• Run compatibility tests.

• Commit

11/9/2010 Plasma State -- D. McCune (PPPL) 26

Current Utilization of Plasma State

Nov. 8, 2010 D. McCune 27

TRANSP Data
Archives (MDS+)

Drivers:
TRANSP/PTRANSP
SWIM SciDAC
FACETS SciDAC

Plasma State
FSP Components:
NUBEAM, GENRAY
CQL3D, TORIC, …

trxpl executable* Single Plasma State

First Principles Slice Analysis
• MHD stability (PEST, M3D…)
• Transport (GYRO, GTC…)
• Diagnostic simulation, etc.

Plasma State time series

Advanced time dependent simulation
• Now: TSC, SWIM IPS
• Soon: FACETS
• Possible: CPES, FSP…

*or subroutine library

Successes

• Data standardization facilities sharing of major
physics components:
– E.g. NBI & FUS (implemented by NUBEAM), the

same code, used by TRANSP/PTRANSP, SWIM,
FACETS.

• Workstations & small clusters, serial, small scale MPI.

• Supercomputers, MPI to low 1000s of processors.

• Data standardization facilitates verification of
component implementations:
– E.g. AORSA & TORIC comparisons in IC component.

11/9/2010 Plasma State -- D. McCune (PPPL) 28

Performance Considerations

• Plasma State I/O is serial overhead.
– But Plasma State aggregate sizes are usually small;

– ~500 scalar lists and low rank profile elements;

– 0.5-5Mbytes as NetCDF, modestly larger memory
footprint due to interpolation data;

– Not a limiting factor in present day applications.

• But this could change quickly if PS is ever
extended to include rank 3 or higher profiles.
– Domain decompositions not yet considered.

11/9/2010 Plasma State -- D. McCune (PPPL) 29

Advanced Techniques (1)

• Create Plasma State with TRANSP profiles but
high resolution JSOLVER MHD equilibrium:
– Extract TRANSP state which includes low resolution

MHD equilibrium (EQ);

– Selective copy to new state object, omitting EQ;
• CALL ps_copy_plasma_state(…) & use cclist(:) control.

– Use JSOLVER, compute high resolution EQ;

– Allocate and write EQ in the copied state object;
write to output file.

12/01/2010 D. McCune 30

Advanced Techniques (2)

• Weighted average of two state objects,
creating a 3rd state object.
– Read or create 2 state objects with congruent

dimensioning
• E.g. as taken from TRANSP archives via “trxpl”.

– Merge the two states into a 3rd state with
indicated weighting:

• CALL ps_merge_plasma_state(weight1, ps1, ps2, &
• new_state = ps3)
• Result: ps3 = weight1*ps1 + (1-weight1)*ps2

– Use e.g. for time interpolation.

12/01/2010 D. McCune 31

Concluding Remarks
• A detailed overview of Plasma State was

presented.
• The software has been useful for integrating

components
– Context: 1.5d transport simulation.

• The software has been useful for sharing data:
– Experimental data in TRANSP archives made

available to theory codes: TGYRO, TSC, SciDACs…

• So far only used for “small” data.
– Gridded data elements of rank at most 2.

12/01/2010 D. McCune 32

	Detailed Overview of the�Plasma State Software
	The Plasma State (PS) Software
	PS Software Distribution
	Plasma State in Fortran-2003
	Plasma State in C++ [1]
	PS Code Development History
	Plasma State Object Contents
	Plasma State Contents (p. 2)
	Plasma State Sections
	Plasma State Physics Components
	For Example: NBI Component
	NBI Component (p. 2)
	PS: What’s in and What’s not
	Item Lists in Specification File
	Item Lists in Plasma State
	Species Lists in Specification File
	Using Species List Data
	Species Lists in Plasma State
	Grids in the Plasma State
	Use of PS in Simulation
	Plasma State Array Allocation
	PS Interpolation Services
	Profile Interpolation by Rezoning
	PS I/O Services
	PS Version Compatibility
	PS Definition Update Procedure
	Current Utilization of Plasma State
	Successes
	Performance Considerations
	Advanced Techniques (1)
	Advanced Techniques (2)
	Concluding Remarks

