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The Plasma State (PS) Software

• Native fortran-2003 implementation.

• Supplemented with detailed C++ facility for 
Plasma State object instantiation and access.

• Contents are defined from a specification file:
– http://w3.pppl.gov/~dmccune/SWIM

• Specification: plasma_state_spec.dat.

• Early design documents.

• Example Plasma State NetCDF files.

• Python script-generated source code.
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PS Software Distribution

• http://w3.pppl.gov/NTCC
– NTCC library module with dependencies

• Build is laborious but we can provide technical support.

– Works well with most Fortran-2003 compilers:
• Pathscale, Intel, gfortran, Solaris, lf95 32-bit.
• PGI (some routines require disabling of optimizer).

– Now used by NUBEAM NTCC module.

• Code development: TRANSP svn repository
• Mirrored in: SWIM SciDAC svn repository
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Plasma State in Fortran-2003
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Program my_prog
use plasma_state_mod ! Definition, methods
! Also declares some instances: ps, psp, aux, …

type (plasma_state) :: my_ps ! User defined…

call ps_init_user_state(my_ps, “my_ps”, ierr)
if(ierr.ne.0)  <…handle error…>

call ps_get_plasma_state(ierr, &
filename=“my_ps.cdf”, state=my_ps)

if(ierr.ne.0)  <…handle error…>

write(6,*) ‘ #thermal species: ‘,my_ps%nspec_th



Plasma State in C++ [1]
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void testCxx(int argc, char* argv[]) {

int debug = getDebugLevel(argc, argv);
// constructor 
PlasmaState ps("test", debug);

// set number of thermal species
ps.setData("nspec_th", 7);
int nspec_th = ps.getData<int>("nspec_th");
assert(nspec_th == 7);

// allocate arrays
ps.alloc();

// store as file
ps.store(“test.nc”);

See: Exposing Fortran Derived 
Types to C and other languages,
A. Pletzer, D. McCune et al., CISE 
Jul/Aug 2008 (Vol. 10 No. 4).



PS Code Development History

• 2006-2007 –
– Design discussions, SWIM project participants

• Physicists, Programmers, CS experts

– Version 1.xxx implementation by D. McCune
– Version 2.xxx, major changes, designed late 2007.

• 2008-2010 –
– Version 2.xxx implementation by D. McCune
– Use in PTRANSP, SWIM, FACETs frameworks;
– Use broadened to other projects e.g. TGYRO.

• Now at PSv2.029; ~1 FTE net labor investment.
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Plasma State Object Contents

• Member elements are scalars and arrays of:
– REAL(KIND=rspec), equivalent to REAL*8.
– INTEGER.
– CHARACTER*nnn – strings of various length.

• Flat structure, scalars and allocatable arrays:
– All object members are primitive fortran types.

• Maximum element identifier length = 19
– Alphabetic 1st character; then alphanumeric + “_”
– 26*37**18 = 4.39*10**29 possible element names
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Plasma State Contents (p. 2)

• C++ set/get method names have maximum 
length 19+13 = 32 characters.

• Semantic elements (constituted by one or 
more primitive PS object data elements):
– Item lists (for example: list of neutral beams).

– Species lists (for example: list of beam species).

– Grids (for example: radial grid for neutral beam 
physics component).
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Plasma State Sections

• Machine_Description
– Time invariant, shot invariant for tokamak-epoch

• Shot_Configuration
– Time invariant within a shot (e.g. species lists).

• Simulation_Init
– Time invariant (e.g. grids & derived species lists).

• State_Data – non-gridded scalars and arrays.

• State_Profiles – arrays of gridded profiles.
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Plasma State Physics Components

• Each data element is assigned to a physics 
component.

• List of components:
– Plasma (pertaining to thermal species profiles)
– EQ (pertaining to MHD equilibrium)
– Heating components: NBI, IC, LH, EC
– FUS (fusion products)
– RAD (radiated power); GAS (neutral species)
– RUNAWAY, LMHD, RIPPLE, ANOM (see spec.)
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For Example: NBI Component

• Machine description:
– List of neutral beams:

• Names, detailed geometry, energy fraction tables.

• Shot configuration:
– Injection species for each neutral beam.

• Simulation initialization:
– Beam species list, derived from shot configuration.

– Radial grid for NBI profile outputs.
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NBI Component (p. 2)
• State Data

– Neutral beam injector powers and voltages.

– Injection fractions (full/half/third energy beam 
current fractions).

• State Profiles
– Beam ion densities nb, and <Eperp>, <Epll>.

– Main Heating: Pbe, Pbi, Pbth.

– Main Torques: Tqbe, Tqbi, TqbJxB, Tqbth.

– Particle source profiles, all thermal species.

– Current drive, beam deposition halo profiles, etc.
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PS: What’s in and What’s not

• Included in Plasma State: physics data shared 
between components:
– E.g. neutral beam powers set by plasma model.
– Profiles returned by NBI, used by plasma model.

• Not included:
– Implementation specific controls:

• E.g. NPTCLS for NUBEAM implementation of NBI.

– Data specific to a single implementation only:
• E.g. Monte Carlo code state as particle lists.

– So far profiles of rank > 2 have not been used.
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Item Lists in Specification File

12/01/2010 D. McCune 14

# Coil/circuit description -- free boundary sim.
L|pf_circuits circuit_name(ncircuits) ! PF circuits

L|pf_coils coil_name(ncoils) ! Axisymmetric coils

N  coil_in_circuit(ncoils) ! circuit to which
! each coil belongs (name must match exactly)

R|units=m  Rloc_coil(ncoils) ! R, lower left corner
R|units=m  Zloc_coil(ncoils) ! Z, lower left corner

…etc…

• L – define list: CHARACTER*32 names & array dimension.
• N – CHARACTER*32 array of names.
• R – REAL*8 arrays or scalars with physical units (MKS & KeV).



Item Lists in Plasma State
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List Label Array of Names, Dimension Component Section

PF_circuits Circuit_name(ncircuits) EQ Machine Descr.

PF_coils Coil_name(ncoils) EQ Machine Descr.

Neutral_beams NBI_src_name(nbeam) NBI Machine Descr.

ICRF_source ICRF_src_name(nicrf_src) IC Machine Descr.

ECRF_source ECRF_src_name(necrf_src) EC Machine Descr.

LHRF_source LHRF_src_name(nlhrf_src) LH Machine Descr.

Gas_source GS_name(ngsc0) GAS Machine Descr.

PS_moments* PSmom_num(npsmom) EQ Sim. Init.

EQ_moments** EQmom_num(neqmom) EQ Sim. Init.

*Neoclassical Pfirsch-Schlutter moments
**Fourier moments for a representation of core plasma flux surfaces

ps%NBI_src_name(ps%nbeam) – name of the last neutral beam in state “ps”



Species Lists in Specification File
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# Main thermal plasma species list:
S|thermal_specie S(0:nspec_th) ! All thermal species
! Index 0 for electrons

S|fusion_ion SFUS(nspec_fusion) ! Fusion products
S|RF_minority RFMIN(nspec_rfmin) ! RF minority ions

S|beam_ion SNBI(nspec_beam) ! Beam species
! Derived from beam injector (nbeam) data

S|specie ALL(0:nspec_all)  ! All species
! Concatenation derived from primary species lists

• S – define species list: <root_name> & <array_dimension>
• CHARACTER*32 <root_name>_name(<array_dimension>)
• INTEGER <root_name>_type(<array_dimension>)
• REAL*8 q_<root_name>(<array_dimension>) – charge (C).
• REAL*8 m_<root_name>(<array_dimension>) – mass (kg).



Using Species List Data
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! The plasma_state_mod module defines parameters:
! Mass of proton (KG)
REAL(KIND=rspec), parameter :: ps_mp = 1.6726e-27_rspec
! Unitary charge (C)
REAL(KIND=rspec), parameter :: ps_xe = 1.6022e-19_rspec

! For data in state object “ps”: last ion in thermal list:
! mass divided by proton mass
A = ps%m_s(ps%nspec_th)/ps_mp
! Atomic charge
Zatom = ps%Qatom_s(ps%nspec_th)/ps_xe
! Ionic charge (Zion = Zatom for fully stripped ion):
Zion = ps%q_s(ps%nspec_th)/ps_xe

do i=1, ps%nspec_th
write(6,*) i, ps%Qatom_s(i)/ps_xe, ps%q_s(i)/ps_xe, &

ps%m_s(i)/ps_mp
enddo



Species Lists in Plasma State

12/01/2010 D. McCune 18

List Label Array Name Root, Dimension Component Section

Thermal_specie S(0:nspec_th) PLASMA Shot Config.

Fusion_ion SFUS(nspec_fusion) FUS Shot Config.

RF_minority RFMIN(nspec_rfmin) IC Shot Config.

Beam_ion SNBI(nspec_beam) NBI Sim. Init.

Specie ALL(0:nspec_all)* PLASMA Sim. Init.

Thermal_specie SA(0:nspec_tha)** PLASMA Sim. Init.

Specie ALLA(0:nspec_alla)*** PLASMA Sim. Init.

Neutral_gas SGAS(nspec_gas) GAS Sim. Init.

Impurity_atoms SIMP0(nspec_imp0) GAS Sim. Init.

* all-species list: all thermal species & all fast ions, combined in single list.
** abridged thermal species list: impurities merged.
*** abridged thermal species & all fast ions, combined in single list.
ps%SA_name(ps%nspec_tha) – name of last thermal ion specie, abridged list.



Grids in the Plasma State
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Grid Array Name, Dimension Component Section

rho(nrho)* PLASMA Sim. Init.

rho_eq(nrho_eq) EQ Sim. Init.

th_eq(nth_eq)** EQ Sim. Init.

R_grid(nR) EQ Sim. Init.

Z_grid(nZ) EQ Sim. Init.

rho_eq_geo(nrho_eq_geo) EQ Sim. Init.

rho_nbi(nrho_nbi) NBI Sim. Init.

rho_fus(nrho_fus) FUS Sim. Init.

(etc., etc., etc.) All components Sim. Init.

* “rho” radial grids: sqrt(<normalized-toroidal-flux>), range [0.00:1.00].
** “th” poloidal angle grid, range [0.00:2*pi] or [-pi:+pi].
All grids are aligned with boundaries of numerical zones, covering 
the entire range of their respective coordinate domains.



Use of PS in Simulation

• Initialization:
– Driver code sets up item lists by reading machine 

description file (an ascii namelist).

– Driver code sets up species lists for simulation.

– Components each set up their own grids.

– Plasma State supports partial allocation, allowing 
for distributed multi-step initialization strategy.

• Time dependent use:
– Components update data in time loop.
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Plasma State Array Allocation

• Procedure:
– Set array dimension sizes (e.g. ps%nrho_nbi = 21).

– Call module routine:
• CALL ps_alloc_plasma_state(ierr, state=ps)

– Set grid values ps%rho_nbi(1:ps%nrho_nbi) = …

• Unallocated arrays with all dimensions defined (i.e. 
greater than 0) are allocated by call.

• Each array can only be allocated once in the history of a 
plasma state object.

• Dynamic re-gridding can be done but requires:
– Creation of a new state object; copying & interpolation of data.
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PS Interpolation Services

• Components provide data on their native grids.

• Interpolation typically required for use.

• Plasma State definition provides “recommended” 
interpolation method for each defined profile:
– Spline, Hermite, piecewise linear, zone step functions

– Conservative “rezoning” of profiles:
• For densities & sources conserve #, #/sec, Watts, …

• For temperatures conserve volume integrated n*T.

• Interpolation libraries: xplasma, pspline (NTCC).
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Profile Interpolation by Rezoning
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! Plasma State “ps” has fine PLASMA grid ps%nrho = 101
! and coarse NBI grid ps%nrho_nbi = 21
use plasma_state_mod ! Interpolation data tags id_<name>(…)
! Test arrays:
real*8, dimension(:), allocatable :: my_te, my_pbi

! Allocate arrays with zone-centered orientation
allocate(my_te(ps%nrho_nbi-1),my_pbi(ps%nrho-1))

! Fine-to-coarse rezone (ne*Te sum conserved):
call ps_rho_rezone(ps%rho_nbi, ps%id_Ts(0), my_te, ierr, &

state=ps)

! Coarse-to-fine rezone with smoothing to suppress step
! function structure (PBI sum conserved, output in W/zone,
! local radial shifts up to ½ width of coarse zones).
call ps_rho_rezone(ps%rho, ps%id_pbi, my_pbi, ierr, &

state=ps, nonorm=.TRUE., zonesmoo=.TRUE.)



PS I/O Services

• Ps_get_Plasma_State – read all from NetCDF
• Ps_store_Plasma_state – write all to NetCDF
• Ps_read_update_file – read a Plasma State 

update, e.g. data from a separate component.
• Ps_write_update_file – write an update: 

changed elements only.
• Interpolation data updated on each call.
• All I/O subroutines as well as object definitions 

written and updated by Python code generator.
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PS Version Compatibility

• Current released SWIM version: 2.029.

• All version 2.xxx states compatible
– Code linked to newer PS software can read old 

version state file; some data items missing.

– Code linked to older PS software can read new 
version state file; some data items not used.

• Version interoperability maintained by the 
Python code generator.

• So: version updates are relatively painless.
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PS Definition Update Procedure

• Edit the specification file.

• Run the Python code generator.

• Run compatibility tests.

• Commit
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Current Utilization of Plasma State
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TRANSP Data
Archives (MDS+)

Drivers:
TRANSP/PTRANSP
SWIM SciDAC
FACETS SciDAC

Plasma State
FSP Components:
NUBEAM, GENRAY
CQL3D, TORIC, …

trxpl executable* Single Plasma State

First Principles Slice Analysis
• MHD stability (PEST, M3D…)
• Transport (GYRO, GTC…)
• Diagnostic simulation, etc.

Plasma State time series

Advanced time dependent simulation
• Now: TSC, SWIM IPS
• Soon: FACETS
• Possible: CPES, FSP…

*or subroutine library



Successes

• Data standardization facilities sharing of major 
physics components:
– E.g. NBI & FUS (implemented by NUBEAM), the 

same code, used by TRANSP/PTRANSP, SWIM, 
FACETS.

• Workstations & small clusters, serial, small scale MPI.

• Supercomputers, MPI to low 1000s of processors.

• Data standardization facilitates verification of 
component implementations:
– E.g. AORSA & TORIC comparisons in IC component.
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Performance Considerations

• Plasma State I/O is serial overhead.
– But Plasma State aggregate sizes are usually small;

– ~500 scalar lists and low rank profile elements;

– 0.5-5Mbytes as NetCDF, modestly larger memory 
footprint due to interpolation data;

– Not a limiting factor in present day applications.

• But this could change quickly if PS is ever 
extended to include rank 3 or higher profiles.
– Domain decompositions not yet considered.
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Advanced Techniques (1)

• Create Plasma State with TRANSP profiles but 
high resolution JSOLVER MHD equilibrium:
– Extract TRANSP state which includes low resolution 

MHD equilibrium (EQ);

– Selective copy to new state object, omitting EQ;
• CALL ps_copy_plasma_state(…) & use cclist(:) control.

– Use JSOLVER, compute high resolution EQ;

– Allocate and write EQ in the copied state object; 
write to output file.
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Advanced Techniques (2)

• Weighted average of two state objects, 
creating a 3rd state object.
– Read or create 2 state objects with congruent 

dimensioning
• E.g. as taken from TRANSP archives via “trxpl”.

– Merge the two states into a 3rd state with 
indicated weighting:

• CALL ps_merge_plasma_state(weight1, ps1, ps2, &
• new_state = ps3)
• Result: ps3 = weight1*ps1 + (1-weight1)*ps2

– Use e.g. for time interpolation.
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Concluding Remarks
• A detailed overview of Plasma State was 

presented.
• The software has been useful for integrating 

components
– Context: 1.5d transport simulation.

• The software has been useful for sharing data:
– Experimental data in TRANSP archives made 

available to theory codes: TGYRO, TSC, SciDACs…

• So far only used for “small” data.
– Gridded data elements of rank at most 2.
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