
FACETS - A Tightly-coupled Framework
for Integrated Fusion Modeling

3 December 2010
ANL (solvers): McInnes, Zhang, Balay, Farley, McCourt
CSU (sensitivity research): Estep, Tavener, Sheehan
GA (exp, GYRO): Groebner, Candy
Lehigh (core modeling, SBIR subcontract): Pankin
LLNL (edge physics): Cohen, Rognlien. Lodestro
LLNL (interlanguage): Epperly
ORNL (modeling, user interaction): Cobb
ParaTools (performance analysis): Malony, Spear, Shende
PPPL (core sources, algorithms): McCune, Indireshkumar,

Hammett
UCSD (wall): Pigarov
Tech-X (framework, core): Cary, Carlsson, Hakim, Kruger,

Miah, Pletzer, Shasharina, Vadlamani, Durant, Alexander
Green

https://www.facetsproject.org/

2

FACETS especially thanks its
collaborators

● SWIM collaboration has led to component
improvements that have been exchanged

● CPES: Beginning collaboration with ADIOS
● PETSc/TOPS collaboration has led to

algorithmic improvements
● VACET collaboration critical to developing

visualization

● Important input from other unfunded
collaborators
 Rich Groebner
 Alexei Pankin

3

Outline

● Overview of FACETS
● Framework in Detail

4

FACETS goal: tight coupling framework
for core-edge-wall

● Coupling on short time scales
●  Implicit coupling
●  Inter-processor with MPI and

in-memory communication

Hot central plasma: nearly completely ionized,
magnetic lines lie on flux surfaces, 3D turbulence
embedded in 1D transport

Cooler edge plasma: atomic physics important,
magnetic lines terminate on material surfaces, 3D
turbulence embedded in 2D transport

Material walls, embedded hydrogenic species,
recycling

5

FACETS Approach: couple physics
components

●  A fusion plasma finds a self-consistent, core-edge-wall
state
  Energy into the edge determines the pedestal (pressure) height,

while the pedestal height is a dominant determiner of interior
temperature, and so fusion power

  Particle recycling involves wall loading/discharging, with the
particles from the wall determining plasma density which then
determines flux into the wall

●  Coupling components (as opposed to one monolithic code)
exploits space and time scale disparities and makes use of
proven techniques for incorporating important physics in
each region

●  Plus -- it is not possible to cover all scales for all times
(ITER is 20k ρe across)

6

Plasma core: hot, 3D within 1D
● Plasma core is the region well inside

the separatrix
● Transport along field lines >>

perpendicular transport leading to
homogenization in poloidal direction

● 1D core equations in conservative
form:
  q = {plasma density, electron energy

density, ion energy density}
  F = highly nonlinear fluxes incl.

neoclassical diffusion, electron/ion
temperature gradient induced
turbulence, etc., discussed later

  S = particle and heating sources and
sinks

7

Plasma edge: balance between transport
within and across flux surfaces

● Narrow: strong in-surface transport matched by
slower cross-field transport

● Contacts divertor plates, determines wall loads
● Neutrals transport from edge to fuel core
● First component is UEDGE, multispecies, fluid

plasma transport code

8

The wall is a dynamical medium,
charging, discharging, eroding…

●  Challenges
  Dynamic and static retention of

hydrogen in walls during and between
the plasma shots

  Hydrogen recycling, wall pumping/
outgassing and their effect on plasma
performance

  Heat exhaust by wall
  Erosion/deposition and wall

components lifetime
●  First component: WallPSI

  Distinguish mobile, adsorbed and
trapped hydrogen on surfaces and in
the bulk

  Wall segment covered with non-
uniform mesh with 1 A resolution near
surfaces

9

Large projects require distribution
and connectivity

● Distribution/connectivity of physics
(spatially)
● Distribution/connectivity of computing
● Distribution/connectivity of people

10

Core-Edge-Wall physics requires four
different types of coupling

same points

w
a
l
l

Coupling

Source

Core

• Core (1D)/Edge (2D) coupling involves point coupling
• Edge (2D)/Wall (1D) coupling involves point coupling between edge and
multiple wall instances
• Source (2D)/Core(1D) involves volumetric coupling from source to core
• Equilibrium(1D)/Core(1D)/Edge(1D) involves volumetric coupling

11

2. FACETS created a recursive communicator
splitting framework to allow for such

distributions/connectivities

● Core contains
fluxes, sources

● Sources can live
across core and
edge

FACETS is launched
with a set of available
processor elements
(PEs)

FACETS allocates PEs
to physics components

Edge (e.g.,Uedge)

Wall (e.g WallPsi)

In this example, the
core divides up PEs
further for flux
calculation

 fluxes

Neutral Beam Sources (NUBEAM)

Software general enough to work in many situations

12

Processor decomposition can occur in
two stages

●  Stage 1: Each component is give a set of PEs based on estimated work load
●  For each component a new MPI communicator is created using

MPI_Comm_Split()
●  A simple round-robin scheme is used to divide the PEs

●  Stage 2: A component may need to decompose its PEs further into tasks: e.g
for computing turbulent fluxes for use in core or edge transport equations
●  Each task is given its own MPI communicator
●  The rank-0s of each task communicator are collected in another

“messaging” communicator
●  We have developed a Mixed Integer Linear-Programming algorithm to do

the PE decomposition efficiently

With this new infrastructure FACETS is now moving to full scale
simulations on LCFs. Initial embedded core flux calculations
show weak-scaling to 64K processors on Intrepid. Core solver
enhancements in progress.

13

On-HPC "framework" mediates all
communication

• Components do not talk
among themselves

• Allows flexible composition of
components

• Allows generic coupling
schemes to be written (explicit,
implicit) without changing
component code

• Frees component developers
from worrying about every
possible coupling scenario and
scheme

WallPSI

UEDGE

Core

WallPSI UEDGE Core NUBEAM

NUBEAM

FACETS interface standards:

14

FACETS addressing a number of
challenges

● Development complexity: FACETS is developing
and/or composing 2.9M lines of code excluding
external libraries

● Social complexity: FACETS researchers and
developers come from a multitude of institutions
with varying cultures about the best way to work

● Fusion community demographics: funding loss in
the 80's and 90's led to a "mature" group, very
much set in their ways. FACETS introduced
subversion, wikis, build systems, metadata, …

15

FACETS has made a number of
accomplishments

● Highly portable, robust multi-component "on-HPC"
framework

● Methodology for ensuring robustness
● Verification (cross comparison with ASTRA)
●  Implicit, nested iteration core solver, quasi-Newton

core-edge coupling (generic, more than core-edge)
● Componentization of UEDGE, NUBEAM and WallPSI,

GLF23, GYRO, TGLF, NEO, NCLASS
● Robust workflow (multi-platform, multi-parallel

architecture)
● Uniform visualization using standard tools (VisIt,

matplotlib) relying on metadata standards: VizSchema
● First physics: test of edge predictability

16

New core solver used allows larger
stable time steps

● Core solvers, even
though 1D, are
notoriously difficult
 "Stiff (highly

nonlinear) transport
fluxes as a function of
local values and
gradients

● Nested iteration allows
large time steps

very slow convergence,!
no nested iteration!

2-level nested iteration
accelerates convergence!

nested iteration !
accelerates convergence!

17

FACETS core component verified by
comparison with ASTRA

● Benchmark was GLF23
fluxes only for 10 MS

● Ion temperature differs
at r=0.7 by 10%
between ASTRA and
FACETS

● Difference have been
traced to differences in
calculation of
equilibrium quantities.
Ongoing work.

Circ works well

18

Core-edge modeling with interpretive
edge now being done

●  D3D 118897
●  Core profiles reasonably well-

described by GLF23 or TGLF
●  Edge region lacks predictive

models
●  Procedure: Use experimental

data to determine coefficients
required to give profiles over 35
ms with just edge region

●  Use profiles in fully coupled
simulation

●  For core region: Turn of GLF23
over a spatial region to ensure
continuity of fluxes

●  Sources and impurities come
from interpretive transport
simulation

Latest results from coupled core-edge
simulations of pedestal buildup in the DIII-D
tokamak using the FACETS code, Hakim,
GP9.00132

19

Implicit coupling allows faster
computations

●  Prior to this year,
calculations were explicit
  Edge passes matching

temperature to the core
  Core passes flux to the edge
  Lag between values visible at

large time step
  Time step limited to 350 µs

before surface oscillations
present

●  Implicit coupling eliminates
the above disadvantages,
allows 10x time step, 3x
computational savings

●  Limitation was due to
individual components

Implicit core-edge coupling in FACETS,
Carlsson/Cary, GP9.00132

20

FACETS in now in beta at US D.O.E.
Leadership Class Facilities (LCFs)

●  NERSC (Berkeley) installations:
  /project/projectdirs/facets/franklin/internal-path-3.2/facets
  /project/projectdirs/facets/franklin/internal-pgi-10.5/facets
  /project/projectdirs/facets/hopper/internal-pgi-10.3/facets
  /project/projectdirs/facets/carver/internal-gcc-4.4/facets
  svn version 3294

●  ALCF (Argonne) installations
  /home/projects/facets/intrepid/internal/facets
  svn version 3031

●  Executable(s) in the bin subdirectory
●  Running is "simply" submitting a job with the facets

executable and an input file (but usually with a script to
orchestrate env, profiles, …

●  Input file describes the components to be included,
hierarchically, and the connections between them

21

FACETS Composer will facilitate doing
simulations

Written generally enough to
work variety of applications

●  Native (Windows,
Mac, Linux)
application

●  Input file
validation

●  Job submission
●  Job monitoring
●  Visualization

with embedded
VisIt

●  Data analysis

22

Summary and future directions
● A parallel component approach works well for

whole-device modeling including the edge
● Core fluxes and solver have been validated
● Verification studies have shown ability to

predict pedestal buildup with interpretive
coefficients

● Embedded turbulence computations
demonstrated (not shown)

Next steps
● Dynamic equilibrium (theory needed for edge)
● Wall
● Predictive edge (BOUT++)

23

Outline

● Overview of FACETS
● Framework in Detail

24

Framework will enable distributed
multiphysics calculations on HPC machines

Framework provides extensive infrastructure to wrap
external physics components and create new
components and perform massively parallel,
cuncurrent multiphysics simulations.

●  Run on laptops to LCFs
●  Provide sequential execution and make efficient

use of LCFs: good load balancing
●  Support low to high fidelity physics
●  Swap physics without recompiliation

●  Support low latency data exchange between
components
●  Avoid disk files if possible
●  Use MPI or other processor-to-processor

communication
●  Support multiple coupling schemes: explicit,

implicit, …
●  Support creation of components written in different

languages and different eras (WallPsi is C, UEDGE is
Python/Fortran, Nubeam is Fortran 90).

●  Use existing best practices when possible
●  Allow for concurrent and sequential execution from a

single executable or multiple executables if needed

Core

Edge

Wall

25

Framework orchestrates all aspects of
the simulations

● Creates integrated simulation: single executable, but
nothing precludes multiple-executables
● Allocates parallel resources for components
●  Instantiates components, allowing them to read

input files, set initial conditions, etc
● Provides direct memory access to component

● Advances the simulation: i.e. is responsible for the
main loop, and calling out to I/O routines

● Allows for creation of coupling mechanism and
provides API for exchanging data

● Provides extensive infrastructure (arrays, grids,
algorithms) for creating new solvers or coupling
strategies.

26

FACETS supports both external and
internal components

●  Core component is an internal
component: i.e. written using FACETS
provides infrastructure

●  Edge component (UEDGE) is an
external component written in a
version of F90 wrapped using Babel

●  Wall component (WallPSI) is an
external component written in C and
hand-wrapped

●  Beam heating component (Nubeam) is
external component written in Fortran
and hand-wrapped

Core

Edge

Wall

All coupling algorithms (explicit, implicit)
are provided by the framework itself

27

Components must obey well-defined
interfaces for inclusion into FACETS

Full interface available at
https://www.facetsproject.org/wiki/InterfacesAndNamingScheme

Initialization/Finalization Interface
int setLogFile(const string& lf);

int setMpiComm(long comm);

int readParams(const string& infile);

int buildData();

int initialize();

int finalize();

Update Interface
int update(double t);
int revert();

Dump Restore Interface
int dumpToFile(const string& file) const;

int restoreFromFile(const std::string& file);

28

Data access enabled by set/get
methods. Allows run-time flexibility.

Full interface available at
https://www.facetsproject.org/wiki/InterfacesAndNamingScheme

Data Access Interfaces
int set0dDouble(const string& name, double val);

int get0dDouble(const string& name, double& ret) const;

int setNdDouble(const string& name, const std::vector<int>&
shape,const std::vector<double>& data);!
int getNdDouble(const string& name, std::vector<int>& shape,
std::vector<double>& data) const;
int getRankOfInterface(const string& name, size_t& ret)

Simplified interfaces with standard C++ structures

29

Data-exchange is through get/set string
interface

Units are in SI except for temperature in eV. Names and API determined
after long discussion with FACETS team.

quantity_Interface_ElementsymMassnumIonstate_class (name
should be legal C/Python identifier and not underscores in except
as separators)‏
Quantity: e.g. density [m3], energyDensity [J/m3], ptclFlux[1/m2/s],
temperature [eV]
Interface: CE → Core-Edge, EW → Edge-Wall, CS → Core-Source
Species: e.g. O16p8 → fully-ionized oxygen, H2p1 → deuterium,
C12p3 → Carbon-12 with 3rd ionization state
Examples:
density_CE_C12p5, density_CS_He4p2_fusionprod,
ptclFlux_EW_H2p1

30

FACETS framework is written in C++ and uses careful
layering and dynamic and static polymorphism

Cross-­‐project	
 reusable	

	
 code	

Low-­‐Level	
 FACETS	
 interfaces	

Fusion	
 specific	
 interfaces	

Specific	
 code	
 implementa>ons	

and	
 object	
 instan>a>ons	

Main	
 simula>on	
 driver	

Lines of code 69135
Number source files 486
Total managed code Over 2.9 million, 3 million

generated

fcsource

fcstd
fcflds
fccmpnt
fcfusifcs	

FcProfileBase
FcFunction

FcCommBase
FcIoBase

FcGridBase
FcDistArray

FcComponent
FcUpdater

fccore fcedge fcwall fcequil
fctrol FcSimulation

txbase TxHierAttribSet
TxMakerMap

31

C++ framework hierarchy permits
determination of component type

FcComponent

FcContainer

FcUpdaterComponent

FcCoreIfc FcEdgeIfc FcWallIfc

FcCoreComponent FcUedgeComponent FcWallPsiComponent

32

Hierarchy permits determination of
component type

FcComponent

FcContainer

FcUpdaterComponent

FcCoreIfc FcEdgeIfc FcWallIfc

FcCoreComponent FcUedgeComponent FcWallPsiComponent

Define FACETS component

33

Hierarchy permits determination of
component type

FcComponent

FcContainer

FcUpdaterComponent

FcCoreIfc FcEdgeIfc FcWallIfc

FcCoreComponent FcUedgeComponent FcWallPsiComponent

Define fusion components

34

Hierarchy permits determination of
component type

FcComponent

FcContainer

FcUpdaterComponent

FcCoreIfc FcEdgeIfc FcWallIfc

FcCoreComponent FcUedgeComponent FcWallPsiComponent

Allow for
internal components

35

Hierarchy permits determination of
component type

FcComponent

FcContainer

FcUpdaterComponent

FcCoreIfc FcEdgeIfc FcWallIfc

FcCoreComponent FcUedgeComponent FcWallPsiComponent

Concrete implementations of components

36

Separation of data from algorithms
provides run-time flexibility and reuse

●  Framework provides extensive infrastructure
●  Updaters: Encapsulate algorithms
●  DataStructs: Encapsulate data (distributed arrays, pre-

processor arrays, …)
●  Grids: Encapsulate computational domain (Cartesian,

body-fitted, unstructured, …)
●  This infrastructure can be used to
●  Write brand new (non-legacy) algorithm: e.g. FACETS core

solver, implicit solvers for non-linear systems, fluid
solvers, ….

●  Write coupling algorithms: e.g: Explicit coupling, quasi-
Newton coupling, …

37

Example updater: explicit core-edge
coupling

 <Updater myCoreEdgeUpdater>

 kind = containerUpdater

names of components to run

 components = [core, edge]

</Updater>

<Updater coupleCore2Edge>

 kind = bcDataTransferUpdater

name of source component

 fromComponent = core

name of destination component

 toComponent = edge

name of interface

 interface = CE

list of variables to get

 getNames = ["energyFlux_CE_H2p1”]

list of variables to set

 setNames = ["energyFlux_CE_H2p1"]

</Updater>

<UpdateStep coreEdgeStep>

updaters to run

 updaters = [myCoreEdgeUpdater,
coupleCore2Edge, coupleEdge2Core]

</UpdateStep>

38

Special DataStruct can be used to
record simulation diagnostics

 <DataStruct cellElcTemp>

 kind = dynVector

 numComponents = 1

 </DataStruct>

 <Updater recordElcTemp>

 kind = recordFieldAtIndex1D

 onGrid = domain

 # input array name

 in = [temperature_electron]

output dynVector name

 out = [cellElcTemp]

index in input array to record

 index = [16]

component in input array to record

 inpIndices = [0]

</Updater>

<UpdateStep recordElcTempStep>

updaters to run

 updaters = [recordElcTemp]

</UpdateStep>

Recorded data can be used to “replay” a simulation without
actually running the component that produced the data

39

FACETS uses shell scripts for workflow
management

● Workflow: everything that can be done off HPC
●  Pre and post processing of input and experimental data
●  Visualization

● Why shell scripts:
●  With complex workflows (data from experiments, geometry

parsing, …) portability and programmability is desired
●  Programming with a GUI language can get tedious: one

does not want to write compiled code to execute utilities
●  FACETS uses a single input file resulting from

preprocessing
●  External components may use their own input file format

(e.g. UEDGE) but are told what particular file to use.
●  All preprocessing is done using Python or compiled

utilities

40

Workflow can be complex for real
problems

a/g eqdsk

fluxgrid

fluxgrid input file

FACETS

pre file
fragments

pre file

txpp

main
input file

component
def. files

2D geom
file

main
output file

component
output files

core2vsh5

Black: Fixed form ascii
Green: free-form ascii

Blue: HDF5, VisSchema Compliant
Red: Application

profiles
in 2D

matplotlib, VisIt

https://www.facetsproject.org/facets/wiki/CoreEdgeWorkflowDetails

41

Framework communicates with interface
ranks of each component

Core Edge Sources

Container

set/getodDouble() set/getDouble()

The framework is in control of all coupling. The
communication will initiate with a call to get0dDouble(). The
parent will move the returned data to the appropriate rank,
then call set0dDouble() accordingly.

Framework only adds 3 second
overhead on a 2 hour run on 16K
processors.

42

Conclusion: FACETS has developed a
sophisticated parallel HPC framework for

multiphysics simul ations
● FACETS framework orchestrates all aspects of the

simulation life-time
● Framework provides infrastructure to write new

physics components and algorithms and bring-in
legacy components

● Framework provides well-defined API for
components and coupling.

● Sophisticated processor decomposition stratergy is
being integrated into FACETS to make efficient use of
LCFs

● New physics (both fusion and other plasma physics)
has been enabled by the framework

Extra slides

