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Volume Domain of CPES Mission

From somewhere in the core, across the magnetic separatrix surface
and to the material wall (the most difficult domain) &8
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Understanding edge physics, and its influence on
core plasma, is critical for ITER and fusion

- Cold plasma near wall (T4, ~100 eV) R —
. ' . Li
* Plasma in the central core must be hot .
) ) P Profile
for fusion energy production (T, >10 keV) ' =55 siiffness
* V. T is limited by turbulent transport T
— T, is too low in core if Ty, ~0.1 keV (<1980) P | [ S ;
 Formation of H-mode pedestal at edge o Lhorom EPS2000 |
— Strong core-heating in separatrix geometry e TR L T R T
makes plasma to self-organize into H-mode e
- Stiff T, profile, with rapid (<< T.,,¢) Influence g
of edge pedestal on core confinement 9
O
o

— Togge = O keV is aimed for ITER

—But, triggers fast collapse of pedestal T
(ELMs) -> serious wall damage: can we
control ELMs?

* Little understanding - Integrated
simulation in HPC 0 Radius r




CPES Mission

* Edge plasma physics is of multi scale (probably more
than core plasma).
« Usual: Neoclassical, micro-turbulence, MHD events, hot ions (+ rf Waves)
« Added complexity from the magnetic separatrix surface, atomic '
physics, impurity, radiation, material wall, 3D magnetic field, etc.
« Edge plasma is fundamentally full-f kinetic

* This leads to a multi-layered CPES Mission

* Develop new first-principles kinetic edge simulation codes (XGCO
and XGC1): these were the missing edge components

* Develop a new integrated simulation framework to couple the
multi-physics components

« Make scientific discoveries on
« Edge plasma physics (including pedestal, scrape-off, and wall load)
* Edge effect on core plasma confinement

* Well-coordinated collaboration among physicists, applied
mathematicians, and computer scientists has been essential.




Multi-kinetic and multi-MHD codes + atomic and wall data

In volumetric coupling

Kinetic Particle Physics

Neoclassical

Turbulence

Heat flux and torque from core

Neutral, multi-species, atomic and radiation
Wall load, neutral recycling, and sputtering
3D perturbed magnetic field

Non-local core-edge self-organization

Mesh interpolation

Multi-scale
kinetic codes:

XGC1 for

» turbulence time &

XGCO-DEGAS2 for
transport time

P

/

Ampere’s law solver Linear (Elite) and Free bd

. . 00
MHD physics nonlinear MHD magnetic e
* Linear ‘ (M3D_mpp reconstruction | |S&
* Nonlinear _ NIMROD) (M3D_omp, g%
J Magnetlc reconstruction TEQ) zg
* Energetic particle effect Future collaboration with SWIM a%
* RF interaction and RE SciDAC O

Jawiojsuel] 21Wyo

Reduced dimensional

core-edge coupling EACETS

Future collaboration with




Wide range of component codes in CPES

— Extreme scale code, pushing the edge of HPC: XGCO and XGC1
— Small scale codes: M3Domp, Elite, DEGAS 2 and TEQ
— Intermediate scale codes: GEM, M3Dmpp, XGCO

¢ Huge size turbulence data, requiring in-memory coupling: XGC1, GTC,
M3Dmpp

* Small size coupling data without frequent data exchange needs: a file
coupling can do the job: Elite, M3Domp

» Some relationships are more convenient with single executable
coupling: XGC-DEGAS 2, XGC-TEQ

XGC1 performance on 3mm ITER grid
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EFFIS Design Principles

 Accept widely-different physics codes
— Single processor to extreme scale parallelism
— Highly efficient I/O
- PDE and Monte Carlo
—Memory- and file-based couplings simultaneously
* Allow the component codes to keep their independence in
the integrated simulation
—Independent compiler and library options
—Independent code developments and debug within the framework

» Code integration through 1/O layer only with simple APls

* Include automated workflow to local or remote data servers
for real-time monitoring and orchestration, provenance capturing and
searching, metadata collecting and searching, and data storing and
analyzing

* Be supported by efficient and reliable data mover
« Have long lifecycle



EFFIS Design in Service Oriented Architecture
(End-to-end Framework for Fusion Integrated Simulation)

| HPC

Physics service A with A’ compiler
Physics service B with B’ compiler
| Physics service C with C’ compiler |
CS service D with D’ compiler
Math service E with E’ compiler®

I A single job for |
memory and file couplings with
| internal workflow

Kepler External Workflow

Remote Job/Data Management Servers
Job submission/control/monitoring in Kepler
Data Management/Analysis

Remote |l Remote ||




CPES uses modern computer science tools
EFFIS tools

Dashboard

Wide-area
Visualization data
movement

Provenance
and
metadata

Code
coupling

Adaptable I/0

L1 Foundation technologies
= Enabling technologies




Status of multiscale code Integration in CPES on
EFFIS framework (1day goal, Nonlinear MHD is

bottleneck

TEQ
Free bd B-reconst

M3Domp

XGC1 Free bd B-reconst Collab
Short time Mesh interpol. ELITE, etc )
gyrokinetic edge Ampere’s eq. sol e TR \GA
turbulence and e
neoclassical Stability check
XGCO
Transport time Joint
evolution of M3Dmpp,NIMROD CEM’I\/I
kinetic profile Nonlinear ELM
crash

N

Plasma-Surface
Interaction Data

DEGAS2
Neutrals

impurity, radiation, 3D
magnetic perturbation.

Atomic physics

mm==  Under research
mm=  [ctablished

—> Single executable
coupling, established



XGCO: world’s only production kinetic transport modeling code
In realistic edge geometry, with neutrals, impurity, wall
recycling, 3D magnetic field, etc.
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Strong Coupling for RMP penetration: Damped
lteration Solution on EFFIS/Adios

In-memory staging
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