ADIOS 1.2

EU-US Workshop on Software Technologies for Integrated Modeling in Fusion Sweden 12/2//2010

Scott A. Kløsky

klasky@ornl.gov

Collaborators / :

Lofstead, Jay; Matthew Wolf; Schwan, Karsten; Liu, Qing; Podhorszki, Norbert; Todd H Kordenbrock; Oldfield, Ron A; Abbasi, Hasan; Fang Zheng; Ciprian Docan; Fan Zhang; Divya Dinakar; Xiaosong Ma; Mladen Vouk, Samatova, Nagiza F.; Alexander Romosan; Sriram Lakshminarasimhan; Michael Warren; Bing Xie; Arie Shoshani; Micah Beck; K. John Wu, Weikuan Yu, Yuan Tian + many more.

Managed by UT-Battelle for the Department of Energy

Outline

- High End Computing Trends.
- Motivation for ADIOS
- ADIOS features.
- ADIOS performance.
- ADIOS utilities.
- ADIOS demo.
- ADIOS future.

Work supported under DOE funding: ASCR: SDM Center, CPES, Runtime Staging, SAP OFES: GPSC, GSEP NSF: HECURA, RDAV

Extreme scale computing.

- Trends
 - More FLOPS
 - Limited number of users at the extreme scale
- Problems
 - Performance
 - Resiliency
 - Debugging
 - Getting Science done
- Problems will get worse
 - Need a "revolutionary" way to store, access, debug to get the science done!

Managed by UT-Battelle for the Department of Energy Grown J. Dongarra, "Impact of Architecture and Technology for Extreme Scale on Software and Algorithm Design," Cross-

File System, Problems for the Xscale

- The I/O on a HPC system is stressed because
 - Checkpoint-restart writing
 - Analysis and visualization writing
 - Analysis and visualization reading
- Our systems are growing by 2x FLOPS/year.
- Disk Bandwidth is growing ~20%/year.
- Need the number of increase faster than the number of nodes
- As the systems grow, the MTF grows.
- As the complexity of physics increases, the analysis/viz. output grows.
- Need new and innovative approaches in the field to cope with this problem.

Garth Gibson 2010

Trends in HPC Centers

JaguarPF Jaguar Shared work-space 224 K 32K Advantages • **MDS** cheaper for total storage and SAN 1 node bandwidth capacity faster connection of sith lens resources to data 2K 512 Disadvantages additional interference sources potential single point of failure

LUSTRE

- Lustre consists of four major components
 - MetaData Server (MDS)
 - Object Storage Servers (OSSs)
 - Object Storage Targets (OSTs)
 - Clients
- MDS
- OSS
- OST

managed by UI-Dattene

for the Department of Energy

- Performance: Striping, alignment, placement
- GPFS works similar, but ...

SiMon

I/O Componentization: ADIOS Motivation

- End users should be able to select the most efficient I/O method for their code, with minimal effort in terms of code alternations/updates.
 - Systems today can have multiple file systems attached, and MPI I/O hints are difficult to use to get efficient I/O.
- Performance-driven choices should not prevent data from being stored in the desired file format, since this is crucial for later data analysis.
 - Make it easy for application scientist to achieve high performance/scalable I/O.
- Have efficient ways of identifying and selecting certain data for analysis, to help end users cope with the flood of data being produced by these codes.
- Make it easy to introduce new research transport methods into ADIOS.

Managed by UT-Battelle for the Department of Energy

Common I/O Practices in Simulations

- Use netcdf for xy plot diagnostic data.
- Use HDF5, with a schema, for visualization data.
- Use F90 output for Checkpoint data.
 - But this can gives lots of files!
 - Can kill the metadata server!
- Move over to MPI-IO for Checkpoint restart Data.
 - But this can give terrible performance for most users.
 - Small writes can destroy the performance.
- Now there is parallel netcdf
 - What version? Netcdf-4 (from Unicar)? Pnetcdf from Argonne?

ADIOS: Adaptable I/O System

- Provides portable, fast, scalable, easy-to-use, metadata rich output
- Simple API
- Change I/O method by changing XML file only
- Layered software architecture:
 - Allows plug-ins for different I/O implementations
 - Abstracts the API from the method used for I/O
- Open source:
 - <u>http://www.nccs.gov/user-support/center-projects/adios/</u>
- Research methods from many groups:
 - Examples: Rutgers: DataSpaces/DART, Georgia Tech: DataTap, Sandia: NSSI, Netcdf-4, ORNL: MPI_AMR

4 WLUGHE ruther to hat performing an upto fit parter

GOAL 1: Make writing FAST and EASY

- Easy because
 - You can define all of your variables in a file, and write many different file formats without knowing netcdf, Posix, MPI-IO, HDF5, etc.
 - You can write attributes, global arrays (across variables) without complex code (aka HDF5, netcdf).
 - You can change I/O methods without reading new manuals.
- FAST
 - ADIOS 1.0 was released on the Cray XT4
 - Speed up the Chimera code over 1000x
 - Speed up the GTC code. (3x for restarts, 25x for analysis output).
 - Speed up the XGC1 code by 5x.

ADIOS 1.0: Write Performance

- Introduce ADIOS.
- GTC: over 35 GB/s on Cray XT4 (peak = 40 GB/s).
- XGC1: over 30 GB/s on XT4
- S3D: over 20 GB/s on XT4.
- Chimera 1000x better than apps first attempt.

ADIOS Independent MPI-IO			
Function	# calls	Total Time (sec)	
write	2560	2218.28	
MPI_Recv	2555	24.68	
MPI_File_open	2560	95.80	
other	-	65	

Parallel HDF-5		
Function	# calls	Total Time (sec)
write	144065	33109.67
MPI_Bcast	314800	12259.30
MPI_File_open	2560	325.17
other	-	68.71
ØS	SDM	Nation

National Labo

ADIOS_AMR Method

- Targets codes which lots of small writes/mpi process.
- In AMR code, each processor can output varied amount of (possibly small) data.
 - Hence, dynamic aggregation technique is needed to achieve good I/O performance.
- Initial results on Cray XT5, 96,000 procs with 1.8MB/proc.
- Total overhead for I/O for S3D = 0.6%.

Some Other Key Enhancements

- File open threaded.
 - Reduce the total I/O time significantly especially for large-scale runs.
- Data is written out into multiple files to overcome Lustre striping limitations.
- Subfiles are transparent to users, and is chosen for optimal performance for HPC.
 - restart.bp
 - .restart.sub_dir/restart.bp.0
 - .restart.sub_dir/restart.bp.1
 - .restart.sub_dir/restart.bp.2
- To read the data back
 - bpls restart.bp

I/O interference

 Internal: at 128 MB/proc, 8k->16k process, bandwidth degrades 16-28%
 IOR Aggregate Write Bandwidth (512 OST, POSIX-IO)

3.44 vs. 1.86 imbalance factor

128 MB/process, 3 minutes apart

Managed by UT-Battelle for the Department of Energy

Adaptive Algorithm

- Break processes into groups, one group per each storage target
- Schedule processes to write individually per group
- Track completion of groups to enable shifting work

Adaptive Method

- New adaptive method meant to handle the variability of the writes.
- Now codes can achieve almost 60 GB/s at scale!
- Peak IOR (gold standard of I/O benchmarking) gets 60 GB/s on a loaded system.

IBM BGP (Intrepid)

- No Changes in ADIOS...
- Write data from a 3D domain decomposition.
- Small = 128 KB, Medium = 1MB, Large = 8 MB (per mpi process)

But what about the read performance?

- ADIOS 1.0 contained a new file format (ADIOS-BP) to help it achieve excellent performance on the Cray XT4.
- The file format was an Application Log file Format (ALF)
 - Has semantic knowledge of the data. (So better than a file system interface).
 - Has knowledge of the file system.
- The feedback from some in the CS community:

SDM

- "You will never be able to read in a subsection of a 3d global array
- "Your read performance will be abysmal compared to a logically contiguous file format!"

i.e. write to parallel netcdf, parallel hdf5!

File formats

- pNetCDF
 - "right sized" header
 - coordination for each data declaration
 - data stored as logically described
- HDF-5
 - b-tree format
 - coordination for each data declaration
 - single metadata store vulnerable to corruption.
- ADIOS-BP (Binary metadata rich Packed).
 - Individual outputs into "process group" segments.
 - Headers in each process group segment.
 - Metadata indices next
 - Characteristics Integrated into the file format.
 - Index offsets and version flag at end (footer, no header). (Redundant)

Understand the "typical" read access patterns

- Read all of the variables from an integer multiple of the original number of processors.
 - Example: restart data.
- Read in just a few variables on a small number of processors.
 - Visualization
- Read in a 2D slice from a 3D dataset (or lower dimensional reads) on a small number of processors.
 - Analysis.
- Read in a sub volume of a 3D dataset from a small number of processors.
 - Analysis.

Read Performance (PDSW 2009)

- Read results are quite promising for restarts and analysis data.
- Restarts for small/medium small Pixie3D data always better for BP than pnetcdf.
- But why?

Managed by UT-Battelle for the Department of Energy

Problem of reading in 2D data from 3D dataset

The BP file format

File info:	integer /dimensions/nxd+2 scalar = 102			
of groups: 1	integer /dimensions/nyd+2 scalar = 66			
of variables: 32	integer /dimensions/nzd+2 scalar = 3			
of attributes: 16	integer /aux/zsize scalar = 3			
time steps: 102 starting from 1	double /var/v1 {102, 3, 66, 102} = 1			
file size: 132 MB	1 / 1 / 0 {MIN / MAX / AVG / STD_DEV}			
bp version: 513	double /var/v2 {102, 3, 66, 102} = - 2.070502.06 4.8648822.08 0.8			
endianness: Little Endian	5.53109e-07 {MIN / MAX / AVG / STD_DEV}			
Group record:	double /var/v3 {102, 3, 66, 102} = -			
double/time{102} = 0 / 0.2 /0.0990196 / 0.0588536{MIN / MAX / AVG /	1.48595e-06 / 1.48595e-06 / 2.0967e-10 / 2.30334e-07 {MIN / MAX / AVG / STD_DEV}			
STD_DEV}	double /var/v4 {102, 3, 66, 102} = -			
integer /itime {102} = 0 / 100 / 49.5098 / 29.4268 {MIN / MAX / AVG /	1.66745e-08 / 1.66745e-08 / -1.32551e-12 / 2.71603e-09 {MIN / MAX / AVG / STD_DEV}			
STD_DEV}	<pre>string /dimensions/nxd+2/description attr = "30</pre>			
double/dt{102} = 0.002 / 0.0020.002 / nan{MIN / MAX / AVG / STD_DEV}	/ array size in X direction including two ghost cells on the faces"			
integer /nvar scalar = 8				

New characteristics into ADIOS-BP

- Histograms can be automatically generated, in the footer (no added cost in writing).
 - <analysis group="temperature" var="temperature" break-points="0, 100, 200, 300" />
 - <analysis group="temperature" var="temperature" min="0" max="300" count="3"/>
 - Both the above inputs create bins [0, 100), [100, 200), [200, 300)
- Min/max over time steps.
- Averages.
- Easy to add new characteristics.

Example ADIOS code. (XML)

MPI_Init (&argc, &argv); MPI_Comm_rank (comm, &rank); MPI_Comm_size (comm, &size); for (i = 0; i < NX; i++) t[i] = rank*NX + i;strcpy (filename, "adios_global.bp"); adios_init ("adios_global.xml"); adios_open (&adios_handle, "temperature", filename, "w", &comm); #include "gwrite_temperature.ch" adios_close (adios_handle); MPI_Barrier (comm); adios_finalize (rank); MPI_Finalize ();

<?xml version="1.0"?> <adios-config host-language="C"> <adios-group name="temperature" coordinationcommunicator="comm" > <var name="NX" type="integer"/> <var name="size" type="integer"/> <var name="rank" type="integer"/> <global-bounds dimensions="size,NX" offsets="rank,0"> <var name="temperature" gwrite="t" type="double" dimensions="1,NX"/> </global-bounds> <attribute name="description" value="Global array" type="string"/> </adios-group> <method group="temperature" method="MPI"/>
size-MB="2" allocate-time="now"/> </adios-config>

1 more Write example (No XML)

MPI Init (&argc, &argv); MPI Comm rank (comm, &rank); MPI Comm size (comm, &size); Gbounds = sub blocks * NX * size; strcpy (filename, "adios global no xml.bp"); adios init noxml (); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, 10); adios_declare_group (&m_adios_group, "restart", "iter", adios_flag_yes); adios select method (m adios group, "MPI", "", ""); adios define var (m adios group, "NX","", adios integer, 0, 0, 0); adios_define_var (m_adios_group, "Gbounds","", adios_integer,0, 0, 0); for (i=0;i<sub blocks;i++) {</pre> adios_define_var (m adios group, "Offs","", adios integer,0,0,0); adios define var (m adios group, "temp","", adios double, "NX", "Gbounds", "Offs"); }

adios_open (&m_adios_file, "restart", filename, "w", &comm);

Managed by UT-Battelle for the Department of Energy

1 more Write example (No XML)

```
adios groupsize = sub blocks *(4 + 4 + 4 + NX * 8);
adios_group_size (m adios file, adios groupsize, &adios totalsize);
adios_write(m adios file, "NX", (void *) &NX);
adios write(m adios file, "Gbounds", (void *) & Gbounds);
for (block=0;block<sub blocks;block++) {</pre>
 Offs = rank * sub blocks * NX + block*NX;
 adios write(m adios file, "Offs", (void *) &Offs);
 for (i = 0; i < NX; i++)
  t[i] = Offs + i;
 adios_write(m_adios_file, "temp", t);
}
adios_close (m adios file);
MPI Barrier (comm);
adios_finalize (rank);
MPI Finalize ();
return 0;
```

Managed by UT-Battelle for the Department of Energy

Read Example

```
if (rank == size-1)
        filename [256];
char
                                                   slice size = slice size + v->dims[0]%size;
          rank, size, i, j;
  int
                                                   start[1] = 0; count[1] = v->dims[1]; count[0] = slice_size;
  MPI Comm comm = MPI COMM WORLD;
                                                     data = malloc (slice size * v->dims[1] * sizeof
  void * data = NULL:
                                                   (double));
  uint64_t start[2], count[2], bytes_read = 0;
                                                     bytes read = adios read var (g, "temperature", start,
  MPI Init (&argc, &argv);
                                                   count, data);
  MPI_Comm_rank (comm, &rank);
                                                     for (i = 0; i < slice size; i++) {
  MPI Comm size (comm, &size);
                                                       for (j = 0; j < v -> dims[1]; j++)
  ADIOS FILE * f = adios fopen
                                                          printf (" %6.2g\n", * (double *)data + i * v-
("adios_global.bp", comm);
                                                   >dims[1] + i);
  ADIOS GROUP * g = adios_gopen (f,
                                                     }
"temperature");
                                                     free (data);
  ADIOS_VARINFO * v = adios inq var (g,
                                                     adios_gclose (g);
"temperature");
                                                     adios fclose (f);
  /* Using less readers to read the global array
back, i.e., non-uniform */
                                                     MPI Barrier (comm);
  uint64 t slice size = v->dims[0]/size;
                                                     MPI Finalize ();
  start[0] = slice size * rank;
                                                     return 0;
 Managed by UT-Battelle
```

for the Department of Energy

Conclusions

- I/O has been a major problem of many codes at the OLCF, ALCF, and NERSC.
- Business as usual has not been working.
- ADIOS 1.2 has proven to solve most of the I/O methods by combining "state-of-the-art" computer science research with hardened solutions delivered in an open source package.
 - Can save valuable time reading data, writing data, understanding data.
- The philosophy has allowed many institutions to develop for ADIOS independently.
- Please email <u>klasky@ornl.gov</u> if you are interested in using ORNL.
 - Contact <u>help@nccs.gov</u> if you have any problems.

EFFIS

EU-US Workshop on Software Technologies for Integrated Modeling in Fusion Sweden 12/2//2010 Scott A. Klasky klasky@ornl.gov

For the CPES team

Managed by UT-Battelle for the Department of Energy

Physics requirements for a FSP framework

- Provide software infrastructure to enable a diverse group of scientists ability to compose, run, couple, debug, monitor, analyze
 - and automate tracking of fusion codes through common standards and easy-to-use interfaces.
- Individual computational tasks may range from
 - workstations
 - leadership-class computing facilities.
- Scientists need access to a software infrastructure that
 - can span the full range of resources needed by the science
 - one coherent framework.

Specific FSP needs addressed

- Couple multiple services:
 - Coupling physics services on the same platform,
 - "real-time" analysis, visualization on multiple/remote platforms.
 - Coupling physics services on different platforms. (file-based)
- Coupling can be memory-to-memory or via files depending on frequency of coupling and platforms where codes are running
 - Coupling may involve transformation of data
 - Tool needed: fast memory-based coupling capability. (ADIOS)
 - Tool needed: workflow system to coordinate file movement and processing between multiple platforms. (Kepler)

Specific FSP needs addressed

- Monitor large-scale simulations while they are running
 - Process and visualize timestep/checkpoint data as soon as they are generated
 - Move data between platforms
 - Tool needed: modular high-performance I/O to extract data quickly and efficiently. (ADIOS synchronous and asynchronous methods)
 - Tool needed: a workflow system to manage data movement, processing, and generating graphs and images. (Kepler)
 - Workflow system must be robust, run for days, and recover from transient failures.
 - Tool needed: a web-based display capability that is fast and effective. (eSimMon dashboard)

Why SOA

- Data Challenges at Yahoo! Ricardo Baeza-Yates & Raghu Ramakrishnan, Yahoo! Research
 - Data diversity –them: text, streams, structured data, multimedia; us: checkpoints, analysis, coupling, analysis results/dashboard displays-graphs, ...
 - Rich set of processing not just database queries (SQL), but analytics (transformation, aggregation, ...)
 - Attain scale- them: 350K requests/sec! and growing via asynchrony, loose coupling, weak consistency; us: decoupling via ADIOS, data staging, ...
- Leverage file system's high bandwidth- them: DFS++; us: Lustre
- Use multiple ways to represent data- them: row/column stores, DHTs us: BP, tuple spaces, ...
- Deal with reliability- them: DFS based replication/recoverability; us: robust data format, checkpointing
- Make it easy to use- them: self-management, self-tuning; us: adaptive I/O
- Make it easy to change- them: adaptability, i.e., new analyses readily added (us: that's the whole point of the EFFIS SOA)

If Yahoo and Google can do it, so can we!

Complexity leads to a SOA approach

- Concept develop for the enterprise
- Challenge: Manage complexity while maintaining performance/scalability.
 - complexity from the problem (complex physics)
 - complexity from the codes and how they are developed and implemented
 - complexity from coordination across codes and research teams
- Service Oriented Architecture (SOA): Software as a composition of "services"
 - Service: "... a well-defined, self-contained, and independently developed software element that does not depend on the context or state of other services."
 - Abstraction & Separation
 - Computations from compositions and coordination
 - Interface from implementations
 - Existing and proven concept widely accepted/used by the enterprise computing community
- EFFIS Innovation:
 - Minimizing performance impact
 - Addressing unique requirements of FSP specifically and scientific computing in

EFFIS Services

- Adaptable I/O
- Workflows
- Dashboard
- Provenance
- Code coupling
- WAN data movement
- Visualization

Approach: Place highly annotated, fast, easy-to-use I/O methods in the code, which can be monitored and controlled; have a workflow engine record all of the information; visualize this on a dashboard; move desired data to the user's site; and have everything reported to a database.

Benefit: automate complex tasks, and allow users to interact through simple interfaces that expose physics products remotely over the web.

SDM by UT-Battelle CENTER :partment of Energy

ADIOS DataTap method for asynchronous I/O

- Why asynchronous I/O?
 - Reduces performance linkage between I/O subsystem and application
 - Decouple file system performance staging variations and limitations from application run time
- Enables optimizations based on dynamic number of writers
- High bandwidth data extraction from application
- Scalable data movement with shared resources requires us to manage the transfers
- Scheduling properly can greatly reduce the impact of I/O
- ADIOS includes 3 methods for I/O staging
 - DataTap
 - DataSpaces
 - NSSI

Computational Nodes

I/O Nodes

When do you need I/O staging on a large scale machine?

- Poor data layout (from a file system POV) from the code writing to disk.
- Very bad balance of I/O bandwidth and system speed.
 - Currently no production codes have needed this on the Cray XT4, and XT5 and NERSC, ORNL.
- When the data is very large, but is not frequent
 - Example: A code wants to write 54 TB of data from 130K cores.
 - On XT5 with I/O speed at 60 GB/s (system MAX), 25% of time is spent in I/O.
 - But: You can't make a staging area large enough: 42% of the processes would just be used for staging.
- SO

Staging is good for either

- Asynchronous data movement from simulation to a small staging area.
 - We will not be able to stage all of the data, and we can't buffer all of the data on the compute nodes.
 - Need to use asynchronous movement, and this must be scheduled with the MPI communication in your code.
 - Adios_start_calculation, adios_stop_calculation, adios_end_iteration
 - Tell the data movement scheduler when to move the data so it doesn't interfere with the communication in the simulation.
- The creation of I/O pipelines.

Managed by UT-Battelle for the Department of Energy

Creation of I/O pipelines to reduce file activity

Example of an I/O pipeline

Differences with MapReduce:

- Two-pass streaming processing (In compute nodes or Staging Area)
- In-memory storage for speed

-Customizable shuffling phase and additional initialize/finalize phases

ADIOS with DataSpaces for in-memory loose code coupling

- Semantically-specialized virtual shared space
- Constructed on-the-fly on the cloud of staging nodes
 - Indexes data for quick access and retrieval
 - Provides asynchronous coordination and interaction and realizes the shared-space abstraction
- Complements existing interaction/coordination mechanisms
- In-memory code coupling becomes part of the I/O pipeline

- Supports complex geometry-based queries
- In-space (online) data transformation and manipulations
- Robust decentralized data analysis in-thespace

ADIOS with DIMES for in-memory latency-sensitive coupling (DIstributed MEmory Space)

- Motivation:
 - In *tightly-coupled* simulation workflow, synchronous data exchange has a strong requirement for low latency.
 - **DIMES** enables RDMA-based direct process-to-process data transfer between coupled applications.

data flow: Sender App → Receiver App

DIMES System Architecture:

DIMES: Distributed Memory Space for code coupling

- Performance evaluation (DIMES vs MCT): Jaguar
- A global 2D array of size *M* is redistributed from app1 (runs on *N1* cores) to app2 (runs on *N2* cores), and both apps have (block, block) data distribution.

How does it work?

sends

- call adios_open (adios_handle, "writer2D", fn, "w", group_comm, adios_err)
- #include "gwrite_writer2D.fh"
- call adios_close (adios_handle, adios_err)
- Generate the XML file to map F90/C variables to names.

```
<adios-group name="writer2D" >
```

```
<global-bounds
dimensions="dim_x_global,dim_y_global"
offsets="offs_x,offs_y">
```

```
<var name="xy" type="real"
dimensions="dim_x_local,dim_y_local"/>
```

```
</global-bounds>
```

</adios-group>

<transport group="writer2D" method " "DART" />

receives

- call adios_set_read_method (DART ,ierr)
- call adios_read_init (group_comm, ierr)

- call adios_read_var (gh, "dim_x_global",
 offset, readsize, dim_x_local,
 read_bytes)
- call adios_read_var (gh, "dim_y_global",
 offset, readsize, dim_y_local,
 read_bytes)
- call adios_read_var (gh, "xy", offset, readsize, xy, read_bytes)
- call adios_gclose (gh, adios_err)
 call adios fclose (fh, adios err)

Now we have memory-to-memory coupling

This can also be done with just APIs (no XML)

Example: Coupling workflow (memory-to-memory)

National Laboratory

We want the workflow to

- get information about what data is exchanged and when between the codes
 - record data lineage of exchanged data objects (variables)
 - make plots from statistical values
 - e.g. min/max of variables
 - record data lineage of statistical values to image files to allow analysis on those values
- switch from memory-to-memory coupling to a slower file-based coupling and generate more detailed diagnosis on specific conditions

Kepler directors necessary in CPES/FSP

- Support for pipeline parallelism, Process Network (PN)
 - Each actor of the workflow can perform concurrently with other actors. This enables the same workflow to be used repeatedly for a stream of inputs.
- Support for dynamic firing of actors: Dynamic Dataflow (DDF)
 DDF models enable branching and looping

(conditionals). The workflow is sequential.

Full-ELM coupling scenario (divertor heat-load study)

Coupling workflow (memory-to-memory)

Use of GSI Certificates

- PNNL provided GSI extension of org.kepler.ssh
 - Kepler 2.0 supports these certificates
- ORNL installed GSI servers on Jaguar/Ewok and a specialized MyProxy server
 - Jaguar/Ewok are now accessible from NCCS machines, using a DOE certificate
- Full-ELM coupling workflow and XGC monitoring workflow now runs with Kepler 2.0
 - > 2 days coupling is possible if user has DOE certificate

Key features of ADIOS for the coupling

- Data exchange between codes is I/O, although via memory
 - ADIOS plugin can be developed for that (DART)
 - one application code for both modes of coupling
- Switching from memory-to-memory to file-based coupling requires behavior change of the applications
 - ADIOS can switch between plugins at runtime without the knowledge of the applications
- Getting information about the data exchanged through memory
 - ADIOS allows to use 2 plugins at once for each I/O operation

Managed by UT-Battelle for the Department of Energy

Getting that provenance

- Adios-provenance is a plugin to be used as secondary I/O method
 - It gathers only the metadata about the data (small) on one of the processes
 - It can send the metadata over a socket
- Metadata
 - variable names, types, dimensions
 - attributes (with values or reference to variables)
 - characteristics automatically calculated by ADIOS for each variable, currently
 - min/max of an array (per processor)
 - value of a scalar variable

Managed by UT-Battelle for the Department of Energy

53

Connecting the simulation and the workflow

- Workflow has an SSH connection to the front-end
 - to look for data files and execute commands
- Simulation can connect to front-end

Office of

54

Coupling workflow (file-based)

Managed by UT-Battelle for the Department of Energy

WORKS'09, Nov. 16 2009, Portland, OR

pnorbert@ornl.gov

National Laboratory

Coupling workflow (memory-to-memory)

Full-ELM cycle workflow using DART to XGC0-M3D in-memory-coupling

version 1.0, July 2009

Author: Norbert Podhorszki, ORNL

Global, shared variables

*GCinput: */Users/pnb/CouplingTest/dataset_xgc0/input*

Science

National Laboratory

U.S. DEPARTMENT OF ENERGY

*CCEqdskInput: */Users/pnb/CouplingTest/dataset_xgc0/g096333.03

CENTER

Single coupling workflow for both modes

- M3D-OMP step should handle both cases
 - get data file and run
 M3D-OMP job or
 - wait for the result data to appear

Office of

- Actor "Write/Method m3d.in"
 - fire once on trigger; output whenever m3d.in file is written
 - also tell which transport method was used
- Actor "Write g-eqdsk"
 - fire on trigger; output when g-eqdsk file is written

Managed by UT-Battelle for the Department of Energy

Other uses of the provenance

- Eliminate polling
 - "Write" event informs about a data file to be processed by the workflow
 - no need to regularly list sim. directory for data

- Make plots from exchanged data and record data lineage provenance for the produced images
 - later an analysis can get the data from the provenance database (as series of data values) instead of from a (non-existing) file

U.S. DEPARTMENT OF EWOR

59

Essential ingredient to creating a data analysis facility

Process provenance

 the steps performed in the workflow, the progress through the workflow control flow, etc.

Data provenance

 history and lineage of each data item associated with the actual simulation (inputs, outputs, intermediate states, etc.)

Workflow provenance

 history of the workflow evolution and structure

System provenance

- Machine and environment information
- compilation history of the codes
- information about the libraries
- source code
- run-time environment settings

<u>Tracking Files in the Kepler Provenance Framework(Citations: 1)</u> <u>Pierre Mouallem, Roselyne Barreto, Scott Klasky, Norbert Podhorszki, Mladen A. Vouk</u> Conference: <u>Statistical and Scientific Database Management - SSDBM</u>2009

Execution Plane ("Heavy Lifting" Computations and data flows)

Managed by UT-Battelle For the U.S. Department of Energy

eSimMon dashboard for collaborative data management, analysis, and visualization

eSimMon 1.0 will be released this year.

eSimMon

- Goal
 - Abstract post processing services (Analysis with IDL, MatLab, Visit, Paraview, R) away from the interface.
- The eSimMon dashboard allows scientists with different backgrounds and levels of expertise to work together using one single online tool for analysis, visualization, and data movement
- Uses data, web, and workflow service infrastructure for flexibility and portability
- Keeping track of the provenance information (complete data lineage) is key for ease of use and efficiency.
 - It raises the focus from low IT details directly to the science by presenting researchers with simulation variables instead of files and directories.

eSimMon Technology

- Client Technology: Flash which is a popular choice for responsive and event-driven Rich Internet Applications (RIAs)
- Server Technology: PHP/MySQL. The back-end creates and accesses a "data store" that contains user preferences and activities and information stored by the workflow during the simulation monitoring

Analysis

- We have integrated the following analysis
 - Vector graphics
 - Calculator
 - 3D module
 - Matlab
 - R
- We are looking at built-in tools as well as external plugin tools

- Developed GUIs to upload and run Matlab scripts from the dashboard
- Tested this GUIs with the GSI infrastructure at ORNL and Matlab scripts from Seung-Hoe Ku
- Next step are:
 - Explain to users how to use the GUI
 - Get their feedback for next implementation
- In the section we address the following questions:
 - What users need to do to use the GUI?
 - What are the modifications to their scripts?
 - What are the assumptions made by the dashboard?

- Get a DOE grid certificate at: <u>https://pki1.doegrids.org:443</u>
- Execute the initializing command on any machine that supports GSI certificates
 - Run: *myproxy-init –n* to store a credential on the myproxy server
 - Enter your pass phrase

 credential is valid for 7 days
- Log on to the dashboard

CENTER

Mozilla Firefox File Edit View History Bookmarks Tools Help ornl.gov https://esimmon.ccs.ornl.gov/userspages/UploadScriptDescriptionFrameset.html https://esimmon...nFrameset.html × +Main Page - Machine Monitoring Monitoring Job: 011 × X Uploading scripts to the eSimMon dashboard database View/Edit Script Describe Script Script Description Previously uploaded script /tmp/work/rbarreto/workflow/xgc1/ Path of your script: Output Name myjob **Output Name** Output Type Output Specifications 🔵 Single Image Multiple Images • Image (s) .png 🕖 Single Text File • Text Number of inputs Number of inputs Submit Input 0 name: startnum Describe inputs Input 0 type: Number Ŧ Input 1 name: endnum Number Input 1 type: Number v • String Input 2 name: nphi • File Input 2 type: Number 🔹 Range Input 3 name: psix Number . Input 3 type: Input 4 name: meshfile Input 4 type: File 🔻 Enter a quick description of your script. (Optional) Description Save

Describe the script to the dashboard

Describe Script

My Scripts

Matlab Jobs

View and edit uploaded scripts

escribe Script View/Edit Script	 Mozilla Firefox File Edit View Higtory Bookmarks Tools Help C X A ornl.gov https://esimmon.ccs.ornl.gov/userspages/UploadScriptDescriptionFrameset.html Main Page - Machine Monitoring × Monitoring Job: 011 × https://esimmonnFrameset.html × ÷ Uploading scripts to the eSimMon dashboard database 								
1y Scripts v s.m my_tmp_dphi_energy_psi_pf1_3.m	Describe Script View/Edit Script My Scripts V								
dphi energy psi pf45.m	Path	Description	# of inputs	Input names (Types)	Output Name	Output Description			
	/tmp/work/rbarreto/w orkflow/xgc1/shotpf1/ hdf5/my_tmp_dphi_e nergy_psi_pf1_3.m	test	5	startnum(Number);en dnum(Number);mesh file(File);psix(Number);nphi(Number);	my_job.png	Multiple Images			
	Save Cancel								

 Obtain your certificate from the server through the dashboard. The GUI run *myproxy-logon* using your one time password.

- The certificate is valid 12 hours.
 You will see the time remaining on the GUI
- Select a script to run from a list

Shot: 011 Graphics Layout Co	mpare to Analysis Macros 📕 📗 📐	_							
<pre> image image 1d ion_angular_flow_1d_favg ion_angular_flow_1d_omid ion_average_gradpsi_sqr_t ion_delta_f_ratio ion_delta_f_ratio </pre>	Job Submission Window My Scripts Time Left: 11:59:58 Need to Download a Proxy Certificate? Back								
ion_density More info ion_density_1d_favg More info ion_density_1d_ensid More info Main Page - Machine Monitoring X Monitoring Job: 011 X Shot: 011 Graphics Layout Compare to Analysis Macros									
▼ 🗁 image ▼ 🗁 1d	Job Submission Window	•							
<pre>ion_angular_flow_1d_favg ion_angular_flow_1d_omid ion_average_gradpsi_sqr_t ion_delta_f_ratio ion_density ion_density_1d_favg</pre>	My Scripts V s.m my_tmp_dphi_energy_psi_pf1_3.m dphi_energy_psi_pf45.m dphi_energy_psi_pf45.m Meed to powmoad a proxy certificate: Back								

Shot: 011 Graphics Layout Compare to Analysis Macros									
▼ 🗁 image ▼ 🗁 1d	•	ſ	Job Submission Window		0				
ion_angular_flow_1d_favg			My Scripts V						
ion_angular_flow_1d_omid	=		startnum(Number)	1					
ion_delta_f_ratio	=		endnum(Number)	599					
ion_density			nphi(Number)	16					
ion_density_1d_favg			psix(Number)	0.2661956					
ion_density_1d_omid	Γ		mask(Range)	10:285					
ion_density_grad_scale_1d	l		meshfile(File)	1/shotpf45/hdf5/meshfile.h5					
 iondensity_grad_scale_1d	l			Submit Job Select Var					
ion_density_tavg	l	Job Name (Optional)		shku					
ion_dpdr_sqr_1d_favg			,						
ion_dpdr_sqr_1d_omid			Time Left: 11:59:58						
ionenergy_flux_1d_favg			Need to Download a Proxy Certificate? Back						
ion_energy_flux_1d_omid			More info						
ion_energy_flux_per_ptl_1c									

Enter values for each parameter and submit the job.

ES

Get the results

Matlab Jobs

Advantages:

- The script can be ran several times with different parameters
- The description and inputs used are recorded and accessible from the dashboard
- File inputs do not need to be input. Users can use the built-in provenance in the dashboard to run the same analysis on different shots
- We plan to allow users to share scripts and results

Summary and Conclusions

- Unprecedented opportunities for dramatic insights through computation!
- Challenge: *Manage complexity* while maintaining performance/scalability.
 - complexity from the problem (complex physics)
 - complexity from the codes and how they are developed and implemented
 - complexity of underlying infrastructure (disruptive hardware trends)
 - complexity from coordination across codes and research teams
- Overarching philosophy
 - Abstraction & Separation through SOA
 - Allows independent development and execution of physics services.
 - Separates computations from composition and coordination; Interface from implementations.
 - Existing and proven concepts widely accepted/used by the enterprise computing community
- EFFIS Innovations
 - Reducing barriers from a scientists perspective
 - Ease-of-use, simple code integration and maintainability
 - Minimizing performance impact
 - Addressing unique requirements of FSP specifically and scientific computing in general

SDM